Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích và ứng dụng các toán tử tập hợp Aczel–Alsina $$\text {r},\text {s},\text {t}$$ -spherical fuzzy trong quyết định đa tiêu chí
Tóm tắt
Nghiên cứu này tập trung vào việc phát triển và ứng dụng các toán tử tập hợp Aczel–Alsina (AA) trong bối cảnh tập hợp mờ hình cầu $$\textsf {r},\textsf {s},\textsf {t}$$ (SPFS) cho các vấn đề quyết định đa tiêu chí (MCDM). Chúng tôi bắt đầu bằng cách định nghĩa các luật hoạt động AA SPF $$\textsf {r},\textsf {s},\textsf {t}$$ khác nhau và thiết lập các thuộc tính chính của chúng. Tiếp theo, một loạt các toán tử AA được giới thiệu, bao gồm toán tử trung bình có trọng số $$\textsf {r},\textsf {s},\textsf {t}$$ -SPF, toán tử trung bình đánh giá có trọng số $$\textsf {r},\textsf {s},\textsf {t}$$ -SPF, toán tử trung bình hỗn hợp $$\textsf {r},\textsf {s},\textsf {t}$$ -SPF, toán tử hình học có trọng số $$\textsf {r},\textsf {s},\textsf {t}$$ -SPF, toán tử hình học có trọng số đánh giá $$\textsf {r},\textsf {s},\textsf {t}$$ -SPF, và toán tử hình học hỗn hợp $$\textsf {r},\textsf {s},\textsf {t}$$ -SPF. Mỗi toán tử được thảo luận liên quan đến các thuộc tính cụ thể của nó, chẳng hạn như tính đồng nhất, tính đơn điệu, giới hạn và tính giao hoán. Hơn nữa, chúng tôi sử dụng các toán tử này để phát triển một phương pháp MCDM được thiết kế riêng để giải quyết các vấn đề quyết định $$\textsf {r},\textsf {s},\textsf {t}$$ -SPF, đặc biệt là khi trọng số tiêu chí hoàn toàn không xác định. Để chứng minh tính thực tiễn và hiệu quả của phương pháp chúng tôi, một nghiên cứu điển hình được trình bày, tiếp theo là phân tích tham số và nghiên cứu so sánh.
Từ khóa
#Aczel–Alsina operators #spherical fuzzy sets #multi-criteria decision-making #aggregation operators #decision-making methodology.Tài liệu tham khảo
Aczél J, Alsina C (1982) Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements. Aequ Math 25(1):313–315
Akram M, Martino A (2023) Multi-attribute group decision making based on T-spherical fuzzy soft rough average aggregation operators. Granul Comput 8(1):171–207
Akram M, Khan A, Ahmad U (2023a) Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making. Granul Comput 8(2):311–332
Akram M, Naz S, Feng F, Ali G, Shafiq A (2023b) Extended MABAC method based on 2-tuple linguistic T-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection. AIMS Math 8(5):10619–10653
Akram M, Naz S, Feng F, Shafiq A (2023c) Assessment of hydropower plants in Pakistan: muirhead mean-based 2-tuple linguistic t-spherical fuzzy model combining SWARA with COPRAS. Arab J Sci Eng 48(5):5859–5888
Akram M, Naz S, Santos-Garcıa G, Saeed MR (2023d) Extended CODAS method for MAGDM with 2-tuple linguistic T-spherical fuzzy sets. AIMS Math 8(2):3428–3468
Akram M, Niaz Z, Feng F (2023e) Extended CODAS method for multi-attribute group decision-making based on 2-tuple linguistic fermatean fuzzy Hamacher aggregation operators. Granul Comput 8(3):441–466
Akram M, Zahid K, Kahraman C (2023f) A PROMETHEE based outranking approach for the construction of fangcang shelter hospital using spherical fuzzy sets. Artif Intell Med 135:102456
Ali J (2021) A novel score function based CRITIC-MARCOS method with spherical fuzzy information. Comput Appl Math 40:280
Ali J, Garg H (2023) On spherical fuzzy distance measure and TAOV method for decision-making problems with incomplete weight information. Eng Appl Artif Intell 119:105726
Ali J, Naeem M (2022) Complex q-rung orthopair fuzzy Aczel–Alsina aggregation operators and its application to multiple criteria decision-making with unknown weight information. IEEE Access 10:85315–85342
Ali J, Naeem M (2023a) Analysis and application of p, q-quasirung orthopair fuzzy Aczel–Alsina aggregation operators in multiple criteria decision-making. IEEE Access 11:49081–49101
Ali J, Naeem M (2023b) r, s, t-spherical fuzzy VIKOR method and its application in multiple criteria group decision making. IEEE Access 11:46454–46475
Ali J, Bashir Z, Rashid T (2021) Weighted interval-valued dual-hesitant fuzzy sets and its application in teaching quality assessment. Soft Comput 25(5):3503–3530
Ali G, Afzal A, Sheikh U, Nabeel M (2023) Multi-criteria group decision-making based on the combination of dual hesitant fuzzy sets with soft expert sets for the prediction of a local election scenario. Granul Comput. https://doi.org/10.1007/s41066-023-00414-w
Alsalem M, Alsattar H, Albahri A, Mohammed R, Albahri O, Zaidan A, Alnoor A, Alamoodi A, Qahtan S, Zaidan B (2021) Based on T-spherical fuzzy environment: a combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients. J Infect Public Health 14(10):1513–1559
Alsina C, Frank MJ, Schweizer B (2006) Associative functions: triangular norms and copulas. World Scientific, Singapore
Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
Bashir Z, Bashir Y, Rashid T, Ali J, Gao W (2019) A novel multi-attribute group decision-making approach in the framework of proportional dual hesitant fuzzy sets. Appl Sci 9(6):1232
Bonab SR, Ghoushchi SJ, Deveci M, Haseli G (2023) Logistic autonomous vehicles assessment using decision support model under spherical fuzzy set integrated choquet integral approach. Expert Syst Appl 214:119205
Chen SM, Lee LW (2010) Fuzzy decision-making based on likelihood-based comparison relations. IEEE Trans Fuzzy Syst 18(3):613–628
Chen SM, Niou SJ (2011) Fuzzy multiple attributes group decision-making based on fuzzy preference relations. Expert Syst Appl 38(4):3865–3872
Chen SM, Randyanto Y (2013) A novel similarity measure between intuitionistic fuzzy sets and its applications. Int J Pattern Recognit Artif 27(07):1350021
Chen SM, Wang NY (2010) Fuzzy forecasting based on fuzzy-trend logical relationship groups. IEEE Trans Syst Man Cybern Part B (Cybern) 40(5):1343–1358
Chen SM, Ko YK, Chang YC, Pan JS (2009) Weighted fuzzy interpolative reasoning based on weighted increment transformation and weighted ratio transformation techniques. IEEE Trans Fuzzy Syst 17(6):1412–1427
Cuong BC, Kreinovich V (2013) Picture fuzzy sets-a new concept for computational intelligence problems. In: 2013 third world congress on information and communication technologies (WICT 2013). IEEE, pp 1–6
Deschrijver G, Kerre EE (2004) Uninorms in l-fuzzy set theory. Fuzzy Sets Syst 148(2):243–262
Farid HMA, Riaz M, Garcia GS (2023) T-spherical fuzzy information aggregation with multi-criteria decision-making. AIMS Math 8(5):10113–10145
Feng F, Zhang C, Akram M, Zhang J (2023) Multiple attribute decision making based on probabilistic generalized orthopair fuzzy sets. Granul Comput 8(4):863–891
Garg H, Munir M, Ullah K, Mahmood T, Jan N (2018) Algorithm for T-spherical fuzzy multi-attribute decision making based on improved interactive aggregation operators. Symmetry 10(12):670
Hussain A, Ullah K, Yang MS, Pamucar D (2022) Aczel–Alsina aggregation operators on T-spherical fuzzy (TSF) information with application to TSF multi-attribute decision making. IEEE Access 10:26011–26023
Ju Y, Liang Y, Luo C, Dong P, Gonzalez EDS, Wang A (2021) T-spherical fuzzy TODIM method for multi-criteria group decision-making problem with incomplete weight information. Soft Comput 25:2981–3001
Khan MR, Ullah K, Khan Q (2023) Multi-attribute decision-making using Archimedean aggregation operator in T-spherical fuzzy environment. Rep Mech Eng 4(1):18–38
Klement EP, Mesiar R, Pap E (2013) Triangular norms, vol 8. Springer Science & Business Media, Berlin
Liu P, Chen SM, Wang Y (2020) Multiattribute group decision making based on intuitionistic fuzzy partitioned maclaurin symmetric mean operators. Inf Sci 512:830–854
Liu P, Wang D, Zhang H, Yan L, Li Y, Rong L (2021) Multi-attribute decision-making method based on normal T-spherical fuzzy aggregation operator. J Intell Fuzzy Syst 40(5):9543–9565
Luqman A, Shahzadi G (2023) Multi-criteria group decision-making based on the interval-valued q-rung orthopair fuzzy SIR approach for green supply chain evaluation and selection. Granul Comput. https://doi.org/10.1007/s41066-023-00411-z
Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl 31(11):7041–7053
Mahmood T, Warraich MS, Ali Z, Pamucar D (2021) Generalized MULTIMOORA method and Dombi prioritized weighted aggregation operators based on T-spherical fuzzy sets and their applications. Int J Intell Syst 36(9):4659–4692
Mahnaz S, Ali J, Malik MA, Bashir Z (2021) T-spherical fuzzy Frank aggregation operators and their application to decision making with unknown weight information. IEEE Access 10:7408–7438
Meng F, Chen SM, Yuan R (2020) Group decision making with heterogeneous intuitionistic fuzzy preference relations. Inf Sci 523:197–219
Menger K (1942) Statistical metrics. Proc Natl Acad Sci USA 28(12):535
Naeem M, Ali J (2022) A novel multi-criteria group decision-making method based on Aczel–Alsina spherical fuzzy aggregation operators: Application to evaluation of solar energy cells. Phys Scr 97(8):085203
Nasiboglu R, Nasibov E (2023) WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model. Expert Syst Appl 212:118771
Naz S, Akram M, Muzammal M (2023) Group decision-making based on 2-tuple linguistic T-spherical fuzzy COPRAS method. Soft Comput 27(6):2873–2902
Sathyan R, Parthiban P, Dhanalakshmi R, Sachin M (2023) An integrated fuzzy MCDM approach for modelling and prioritising the enablers of responsiveness in automotive supply chain using fuzzy DEMATEL, fuzzy AHP and fuzzy TOPSIS. Soft Comput 27(1):257–277
Seikh MR, Mandal U (2022) Multiple attribute group decision making based on quasirung orthopair fuzzy sets: application to electric vehicle charging station site selection problem. Eng Appl Artif Intell 115:105299
Senapati T, Chen G, Mesiar R, Yager RR (2022a) Novel Aczel–Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process. Int J Intell Syst 37(8):5059–5081
Senapati T, Chen G, Yager RR (2022b) Aczel–Alsina aggregation operators and their application to intuitionistic fuzzy multiple attribute decision making. Int J Intell Syst 37(2):1529–1551
Ullah K, Mahmood T, Garg H (2020) Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators. Int J Fuzzy Syst 22(2):570–582
Ullah K, Garg H, Gul Z, Mahmood T, Khan Q, Ali Z (2021a) Interval valued T-spherical fuzzy information aggregation based on Dombi t-norm and Dombi t-conorm for multi-attribute decision making problems. Symmetry 13(6):1053
Ullah W, Ibrar M, Khan A, Khan M (2021b) Multiple attribute decision making problem using GRA method with incomplete weight information based on picture hesitant fuzzy setting. Int J Intell Syst 36(2):866-889
Wang W, Liu X (2012) Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans Fuzzy Syst 20(5):923–938
Wang N, Li Q, Abd El-Latif AA, Yan X, Niu X (2013) A novel hybrid multibiometrics based on the fusion of dual iris, visible and thermal face images. In: 2013 International symposium on biometrics and security technologies. IEEE, pp 217–223
Wu MQ, Chen TY, Fan JP (2019) Divergence measure of T-spherical fuzzy sets and its applications in pattern recognition. IEEE Access 8:10208–10221
Xia M, Xu Z, Zhu B (2012) Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. Knowl Based Syst 31:78–88
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
Zeng S, Garg H, Munir M, Mahmood T, Hussain A (2019) A multi-attribute decision making process with immediate probabilistic interactive averaging aggregation operators of T-spherical fuzzy sets and its application in the selection of solar cells. Energies 12(23):4436
Zhang Z, Chen SM, Wang C (2020) Group decision making with incomplete intuitionistic multiplicative preference relations. Inf Sci 516:560–571
Zou XY, Chen SM, Fan KY (2020) Multiple attribute decision making using improved intuitionistic fuzzy weighted geometric operators of intuitionistic fuzzy values. Inf Sci 535:242–253
