Analysing the health effects of simultaneous exposure to physical and chemical properties of airborne particles
Tài liệu tham khảo
Akaike, 1973, Information theory and an extension of the maximum likelihood principle, 267
Antoniak, 1974, Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, Ann. Stat., 2, 1152, 10.1214/aos/1176342871
Atkinson, 2010, Urban ambient particle metrics and health: a time-series analysis, Epidemiology, 21, 501, 10.1097/EDE.0b013e3181debc88
Atkinson, 2014, Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis, Thorax, 69, 660, 10.1136/thoraxjnl-2013-204492
Austin, 2012, A framework for identifying distinct multipollutant profiles in air pollution data, Environ. Int., 45, 112, 10.1016/j.envint.2012.04.003
Bell, 2004, Time-series studies of particulate matter, Annu. Rev. Public Health, 25, 247, 10.1146/annurev.publhealth.25.102802.124329
Bell, 2013, Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: a systematic review and meta-analysis, Am. J. Epidemiol., 178, 865, 10.1093/aje/kwt090
Bhaskaran, 2013, Time series regression studies in environmental epidemiology, Int. J. Epidemiol., 42, 1187, 10.1093/ije/dyt092
Buonanno, 2013, Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects, Environ. Pollut., 180, 246, 10.1016/j.envpol.2013.05.039
Burnett, 2003, On the relationship between time-series studies, dynamic population studies, and estimating loss of life due to short-term exposure to environmental risks, Environ. Health Perspect., 111, 1170, 10.1289/ehp.5883
Cao, 2012, Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city, Environ. Health Perspect., 120, 373, 10.1289/ehp.1103671
Carslaw, 2012, openair — an R package for air quality data analysis, Environ. Model Softw., 27–28, 52, 10.1016/j.envsoft.2011.09.008
Chuang, 2007, The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults, Am. J. Respir. Crit. Care Med., 176, 370, 10.1164/rccm.200611-1627OC
Dai, 2014, Associations of fine particulate matter species with mortality in the United States: a multicity time-series analysis, Environ. Health Perspect., 122, 837, 10.1289/ehp.1307568
Dominici, 2010, Protecting human health from air pollution: shifting from a single-pollutant to a multipollutant approach, Epidemiology, 21, 187, 10.1097/EDE.0b013e3181cc86e8
EPA U.S., 2012, Provisional assessment of recent studies on health effects of particulate matter exposure
Escobar, 1995, Bayesian density estimation and inference using mixtures, J. Am. Stat. Assoc., 90, 577, 10.1080/01621459.1995.10476550
Ferguson, 1973, A Bayesian analysis of some non-parametric problems, Ann. Stat., 1, 209, 10.1214/aos/1176342360
Frühwirth-Schnatter, 2008, Model-based clustering of multiple time series, J. Bus. Econ. Stat., 26, 78, 10.1198/073500107000000106
Fuller, 2006, Evidence for increasing primary PM10 in London, Atmos. Environ., 40, 6134, 10.1016/j.atmosenv.2006.05.031
Fuller, 2002, An empirical approach for the prediction of daily mean PM10 concentrations, Atmos. Environ., 36, 1431, 10.1016/S1352-2310(01)00580-5
Gelman, 2008, A weakly informative default prior distribution for logistic and other regression models, Ann. Appl. Stat., 2, 1360, 10.1214/08-AOAS191
Gómez-Losada, 2014, Finite mixture models to characterize and refine air quality monitoring networks, Sci. Total Environ., 485–486, 292, 10.1016/j.scitotenv.2014.03.091
Gu, 2012, Selection of key ambient particulate variables for epidemiological studies — applying cluster and heatmap analyses as tools for data reduction, Sci. Total Environ., 435–436, 541, 10.1016/j.scitotenv.2012.07.040
Hastie, 2013, A semi-parametric approach to estimate risk functions associated with multi-dimensional exposure profiles: application to smoking and lung cancer, BMC Med. Res. Methodol., 13, 129, 10.1186/1471-2288-13-129
Heal, 2012, The relationship between black carbon concentration and black smoke: a more general approach, Atmos. Environ., 54, 538, 10.1016/j.atmosenv.2012.02.067
HEI, 2010, Traffic-related air pollution: A critical review of the literature on emission, exposure, and health effects
Janssen, 2012
Jones, 2012, A large reduction in airborne particle number concentrations at the time of the introduction of “sulphur free” diesel and the London Low Emission Zone, Atmos. Environ., 50, 129, 10.1016/j.atmosenv.2011.12.050
Kalli, 2011, Slice sampling mixture models, Stat. Comput., 21, 93, 10.1007/s11222-009-9150-y
Kaufman, 2005
Krzyzanowski, 2005
Liverani, 2015, PReMiuM: an R package for profile regression mixture models using Dirichlet processes, J. Stat. Softw., 10.18637/jss.v064.i07
Matyasovszky, 2011, Multivariate analysis of respiratory problems and their connection with meteorological parameters and the main biological and chemical air pollutants, Atmos. Environ., 45, 4152, 10.1016/j.atmosenv.2011.05.024
McLachlan, 2010, Clustering of high-dimensional data via finite mixture models, 33
McLachlan, 2000
Molitor, 2010, Bayesian profile regression with an application to the national survey of children's health, Biostatistics, 11, 484, 10.1093/biostatistics/kxq013
Molitor, 2011, Identifying vulnerable populations through an examination of the association between multipollutant profiles and poverty, Environ. Sci. Technol., 45, 7754, 10.1021/es104017x
Morawska, 2013, Indoor aerosols: from personal exposure to risk assessment, Indoor Air, 23, 462, 10.1111/ina.12044
Müller, 1996, Bayesian curve fitting using multivariate normal mixtures, Biometrika, 83, 67, 10.1093/biomet/83.1.67
Neal, 2003, Slice sampling, Ann. Stat., 31, 705, 10.1214/aos/1056562461
Nieto-Barajas, 2014, A Bayesian nonparametric approach for time series clustering, Bayesian Anal., 9, 147, 10.1214/13-BA852
Oakes, 2014, Evaluating the application of multipollutant exposure metrics in air pollution health studies, Environ. Int., 69, 90, 10.1016/j.envint.2014.03.030
Ostro, 2009, The effects of fine particle components on respiratory hospital admissions in children, Environ. Health Perspect., 117, 475, 10.1289/ehp.11848
Özkaynak, 2013, Air pollution exposure prediction approaches used in air pollution epidemiology studies, J. Expo. Sci. Environ. Epidemiol., 23, 566, 10.1038/jes.2013.15
Papaspiliopoulos, 2008, Retrospective Markov chain Monte Carlo for Dirichlet process hierarchical models, Biometrika, 95, 169, 10.1093/biomet/asm086
Papathomas, 2011, Examining the joint effect of multiple risk factors using exposure risk profiles: lung cancer in nonsmokers, Environ. Health Perspect., 119, 84, 10.1289/ehp.1002118
Papathomas, 2012, Exploring data from genetic association studies using Bayesian variable selection and the Dirichlet process: application to searching for gene×gene patterns, Genet. Epidemiol., 6, 663, 10.1002/gepi.21661
Peng, 2006, Model choice in time series studies of air pollution and mortality, J. R. Stat. Soc. Ser. A, 169, 179, 10.1111/j.1467-985X.2006.00410.x
Reiss, 2007, Evidence of health impacts of sulfate-and nitrate-containing particles in ambient air, Inhal. Toxicol., 19, 419, 10.1080/08958370601174941
Schwarz, 1978, Estimating the dimension of a model, Ann. Stat., 6, 461, 10.1214/aos/1176344136
Sethuraman, 1994, A constructive definition of Dirichlet priors, Stat. Sin., 4, 639
Shaddick, 2013, Ecological bias in studies of the short-term effects of air pollution on health, Int. J. Appl. Earth Obs. Geoinf., 22, 65, 10.1016/j.jag.2012.03.011
Walker, 2007, Sampling the Dirichlet mixture model with slices, Commun. Stat. Simul. Comput., 36, 45, 10.1080/03610910601096262
WHO/Europe, 2013
Zanobetti, 2014, Health effects of multi-pollutant profiles, Environ. Int., 71, 13, 10.1016/j.envint.2014.05.023