Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer

Arthritis Research & Therapy - Tập 15 - Trang 1-13 - 2013
Idalia Garza-Veloz1,2, Viktor J Romero-Diaz3, Margarita L Martinez-Fierro2, Ivan A Marino-Martinez4, Manuel Gonzalez-Rodriguez1, Herminia G Martinez-Rodriguez1, Marcela A Espinoza-Juarez1, Dante A Bernal-Garza4, Rocio Ortiz-Lopez1,4, Augusto Rojas-Martinez1,4
1Departamento de Bioquimica y Medicina Molecular, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
2Laboratorio de Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
3Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
4Unidad de Terapia Genica y Celular, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico

Tóm tắt

Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the development of cell-based therapies for cartilage repair.

Tài liệu tham khảo

Beris AE, Lykissas MG, Papageorgiou CD, Georgoulis AD: Advances in articular cartilage repair. Injury. 2005, 36 (Suppl 4): S14-S23. Bedi A, Feeley BT, Williams RJ: Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010, 92: 994-1009. 10.2106/JBJS.I.00895. Thirion S, Berenbaum F: Culture and phenotyping of chondrocytes in primary culture. Methods Mol Med. 2004, 100: 1-14. Stokes DG, Liu G, Coimbra IB, Piera-Velazquez S, Crowl RM, Jimenez SA: Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum. 2002, 46: 404-419. 10.1002/art.10106. Wei Y, Sun X, Wang W, Hu Y: Adipose-derived stem cells and chondrogenesis. Cytotherapy. 2007, 9: 712-716. 10.1080/14653240701620596. Ronziere MC, Perrier E, Mallein-Gerin F, Freyria AM: Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed Mater Eng. 2010, 20: 145-158. Estes BT, Wu AW, Storms RW, Guilak F: Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol. 2006, 209: 987-995. 10.1002/jcp.20808. Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, Lieberman JR: Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng. 2005, 11: 120-129. 10.1089/ten.2005.11.120. Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U: Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther. 2007, 9: 213-10.1186/ar2195. Yan J, Li L, Zhang Q: [In vitro study on induction systems for marrow mesenchymal stem cells to chondrocytes]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006, 20: 1114-1118. Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA, Mikos AG: Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A. 2009, 88: 889-897. Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O'Driscoll SW: Combined effects of insulin-like growth factor-1 and transforming growth factor-β1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage. 2003, 11: 55-64. 10.1053/joca.2002.0869. Madry H, Orth P, Kaul G, Zurakowski D, Menger MD, Kohn D, Cucchiarini M: Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg. 2010, 130: 1311-1322. 10.1007/s00402-010-1130-3. Stevens MM, Marini RP, Martin I, Langer R, Prasad Shastri V: FGF-2 enhances TGF-β1-induced periosteal chondrogenesis. J Orthop Res. 2004, 22: 1114-1119. 10.1016/j.orthres.2003.12.021. Lefebvre V, Behringer RR, de Crombrugghe B: L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage. 2001, 9 (Suppl A): S69-S75. Trippel SB, Ghivizzani SC, Nixon AJ: Gene-based approaches for the repair of articular cartilage. Gene Ther. 2004, 11: 351-359. 10.1038/sj.gt.3302201. Grande DA, Mason J, Light E, Dines D: Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am. 2003, 85-A (Suppl 2): 111-116. Ghivizzani SC, Oligino TJ, Glorioso JC, Robbins PD, Evans CH: Direct gene delivery strategies for the treatment of rheumatoid arthritis. Drug Discov Today. 2001, 6: 259-267. 10.1016/S1359-6446(01)01685-3. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW, Vogelstein B, He TC: A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2007, 2: 1236-1247. 10.1038/nprot.2007.135. Dubois SG, Floyd EZ, Zvonic S, Kilroy G, Wu X, Carling S, Halvorsen YD, Ravussin E, Gimble JM: Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Methods Mol Biol. 2008, 449: 69-79. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262. Reger RL, Tucker AH, Wolfe MR: Differentiation and characterization of human MSCs. Methods Mol Biol. 2008, 449: 93-107. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS: Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004, 14: 311-324. 10.1159/000080341. Estes BT, Diekman BO, Gimble JM, Guilak F: Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc. 2010, 5: 1294-1311. 10.1038/nprot.2010.81. Cao L, Yang F, Liu G, Yu D, Li H, Fan Q, Gan Y, Tang T, Dai K: The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials. 2011, 32: 3910-3920. 10.1016/j.biomaterials.2011.02.014. Jin X, Sun Y, Zhang K, Wang J, Shi T, Ju X, Lou S: Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF β2. Biomaterials. 2007, 28: 2994-3003. 10.1016/j.biomaterials.2007.03.002. Gelse K, von der Mark K, Aigner T, Park J, Schneider H: Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum. 2003, 48: 430-441. 10.1002/art.10759. Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR: Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther. 2007, 14: 804-813. 10.1038/sj.gt.3302938. Hu G, Liu P, Feng J, Jin Y: A novel population of mesenchymal progenitors with hematopoietic potential originated from CD14 peripheral blood mononuclear cells. Int J Med Sci. 2010, 8: 16-29. Pittenger MF: Mesenchymal stem cells from adult bone marrow. Methods Mol Biol. 2008, 449: 27-44. Munirah S, Samsudin OC, Aminuddin BS, Ruszymah BH: Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Tissue Cell. 2010, 42: 282-292. 10.1016/j.tice.2010.07.002. Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM: Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res. 1997, 237: 318-325. 10.1006/excr.1997.3781. Mehlhorn AT, Niemeyer P, Kaiser S, Finkenzeller G, Stark GB, Sudkamp NP, Schmal H: Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006, 12: 2853-2862. 10.1089/ten.2006.12.2853. Barry F, Boynton RE, Liu B, Murphy JM: Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001, 268: 189-200. 10.1006/excr.2001.5278. Martin JA, Scherb MB, Lembke LA, Buckwalter JA: Damage control mechanisms in articular cartilage: the role of the insulin-like growth factor I axis. Iowa Orthop J. 2000, 20: 1-10. Patil AS, Sable RB, Kothari RM: Role of insulin-like growth factors (IGFs), their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage. J Cell Physiol. 2012, 227: 1796-1804. 10.1002/jcp.22905. Khan WS, Adesida AB, Tew SR, Lowe ET, Hardingham TE: Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res. 2010, 28: 834-840. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A: Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004, 320: 914-919. 10.1016/j.bbrc.2004.06.029. Palmer GD, Steinert A, Pascher A, Gouze E, Gouze JN, Betz O, Johnstone B, Evans CH, Ghivizzani SC: Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther. 2005, 12: 219-228. 10.1016/j.ymthe.2005.03.024. Kawamura K, Chu CR, Sobajima S, Robbins PD, Fu FH, Izzo NJ, Niyibizi C: Adenoviral-mediated transfer of TGF-β1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures. Exp Hematol. 2005, 33: 865-872. 10.1016/j.exphem.2005.05.010. Weiss S, Hennig T, Bock R, Steck E, Richter W: Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol. 2010, 223: 84-93. Kim HJ, Im GI: Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. J Orthop Res. 2009, 27: 612-619. 10.1002/jor.20766. Handorf AM, Li WJ: Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS One. 2011, 6: e22887-10.1371/journal.pone.0022887. Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M, Shinomiya K, Okawa A: Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res. 2010, 28: 677-686. Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D, Trippel SB, Madry H: Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med. 2006, 8: 100-111. 10.1002/jgm.819. Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD, Kohn D, Trippel SB, Terwilliger EF: Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther. 2005, 12: 229-238. 10.1016/j.ymthe.2005.03.012. Loeser RF, Chubinskaya S, Pacione C, Im HJ: Basic fibroblast growth factor inhibits the anabolic activity of insulin-like growth factor 1 and osteogenic protein 1 in adult human articular chondrocytes. Arthritis Rheum. 2005, 52: 3910-3917. 10.1002/art.21472. Mwale F, Stachura D, Roughley P, Antoniou J: Limitations of using aggrecan and type × collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J Orthop Res. 2006, 24: 1791-1798. 10.1002/jor.20200.