Analog versus multi-model ensemble forecasting: A comparison for renewable energy resources

Renewable Energy - Tập 205 - Trang 563-573 - 2023
Areti Pappa1, Ioannis Theodoropoulos1, Stefano Galmarini2, Ioannis Kioutsioukis1
1Department of Physics, University of Patras, 26504 Rio, Patras, Greece
2Joint Research Centre (JRC), European Commission, Via E. Fermi 2749, 21027 Ispra, Italy

Tài liệu tham khảo

2021 AlSkaif, 2020, A systematic analysis of meteorological variables for pv output power estimation, Renew. Energy, 153, 12, 10.1016/j.renene.2020.01.150 Drisya, 2018, Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations, Renew. Energy, 119, 540, 10.1016/j.renene.2017.12.024 Zhang, 2022, Solar forecasting with hourly updated numerical weather prediction, Renew. Sustain. Energy Rev., 154, 10.1016/j.rser.2021.111768 Verbois, 2022, Statistical learning for NWP post-processing: a benchmark for solar irradiance forecasting, Sol. Energy, 238, 132, 10.1016/j.solener.2022.03.017 Verbois, 2018, Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting, Sol. Energy, 173, 313, 10.1016/j.solener.2018.07.071 Kioutsioukis, 2014, De praeceptis ferendis: good practice in multi-model ensembles, Atmos. Chem. Phys., 14, 11791, 10.5194/acp-14-11791-2014 Kalnay, 2003, 341 Kioutsioukis, 2016, Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data, Atmos. Chem. Phys., 16, 15629, 10.5194/acp-16-15629-2016 Potempski, 2009, Est modus in rebus: analytical properties of multi-model ensembles, Atmos. Chem. Phys., 9, 9471, 10.5194/acp-9-9471-2009 Yang, 2021, Post-processing in solar forecasting: ten overarching thinking tools, Renew. Sustain. Energy Rev., 140, 10.1016/j.rser.2021.110735 Schulz, 2021, Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting, Sol. Energy, 220, 1016, 10.1016/j.solener.2021.03.023 Delle Monache, 2013, Probabilistic weather prediction with an analog ensemble, Mon. Weather Rev., 141, 3498, 10.1175/MWR-D-12-00281.1 Alessandrini, 2015, A novel application of an analog ensemble for short-term wind power forecasting, Renew. Energy, 76, 768, 10.1016/j.renene.2014.11.061 Shahriari, 2020, Using the analog ensemble method as a proxy measurement for wind power predictability, Renew. Energy, 146, 789, 10.1016/j.renene.2019.06.132 Alessandrini, 2019, Improving the analog ensemble wind speed forecasts for rare events, Mon. Weather Rev., 147, 2677, 10.1175/MWR-D-19-0006.1 Alessandrini, 2015, An analog ensemble for short-term probabilistic solar power forecast, Appl. Energy, 157, 95, 10.1016/j.apenergy.2015.08.011 Zhang, 2019, A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting," in, IEEE Transactions on Sustainable Energy, 10, 268, 10.1109/TSTE.2018.2832634 Alessandrini, 2022, Predicting rare events of solar power production with the analog ensemble, Sol. Energy, 231, 72, 10.1016/j.solener.2021.11.033 Junk, 2015, Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble, Meteorol. Z., 24, 361, 10.1127/metz/2015/0659 Davò, 2016, Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting, Sol. Energy, 134, 327, 10.1016/j.solener.2016.04.049 Cervone, 2017, Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble, Renew. Energy, 108, 274, 10.1016/j.renene.2017.02.052 Brunner, 2015, Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2, Atmos. Environ., 115, 470, 10.1016/j.atmosenv.2014.12.032 OGIMET, https://www.ogimet.com/, 2023 (accessed 13 January 2023). BSRN, https://bsrn.awi.de/, 2023 (accessed 13 January 2023). AQMEII, http://aqmeii.jrc.ec.europa.eu, 2023 (accessed 13 January 2023). Buizza, 2005, A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems, Mon. Weather Rev., 133, 1076, 10.1175/MWR2905.1 Perez, 2013, Comparison of numerical weather prediction solar irradiance forecasts in the US Canada and Europe, Sol. Energy, 94, 305, 10.1016/j.solener.2013.05.005 Hacker, 2011, The U.S. Air Force Weather Agency’s mesoscale ensemble: scientific description and performance results: AFWA MESOSCALE ENSEMBLE, Tellus A, 63, 625, 10.1111/j.1600-0870.2010.00497.x Galmarini, 2004, Ensemble dispersion forecasting, part 1: concept, approach and indicators, Atmos. Environ., 38, 4607, 10.1016/j.atmosenv.2004.05.030 Galmarini, 2013, E pluribus unum*: ensemble air quality predictions, Atmos. Chem. Phys., 13, 7153, 10.5194/acp-13-7153-2013 Solazzo, 2012, Ensemble modelling of surface level ozone in Europe and North America in the context of AQMEI, Atmos. Environ., 53, 60, 10.1016/j.atmosenv.2012.01.003 Im, 2015, Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter, Atmospheric Environment, 115, 421, 10.1016/j.atmosenv.2014.08.072 ECMWF, https://www.ecmwf.int/, 2023 (accessed 13 January 2023).