Analog quantum simulation of gravitational waves in a Bose-Einstein condensate

EPJ Quantum Technology - Tập 2 - Trang 1-9 - 2015
Tupac Bravo1, Carlos Sabín1, Ivette Fuentes1
1School of Mathematical Sciences, University of Nottingham, Nottingham, UK

Tóm tắt

We show how to vary the physical properties of a Bose-Einstein condensate (BEC) in order to mimic an effective gravitational-wave spacetime. In particular, we focus in the simulation of the recently discovered creation of particles by a real spacetime distortion in box-type traps. We show that, by modulating the speed of sound in the BEC, the phonons experience the effects of a simulated spacetime ripple with experimentally amenable parameters. These results will inform the experimental programme of gravitational wave astronomy with cold atoms.

Tài liệu tham khảo

Georgescu IM, Ashhab S, Nori F: Quantum simulation. Rev Mod Phys 2014, 86:153–185. 10.1103/RevModPhys.86.153 Gerritsma R, Kirchmair G, Zähringer F, Solano E, Blatt R, Roos CF: Quantum simulation of the Dirac equation. Nature 2010, 463:68–71. 10.1038/nature08688 Casanova J, Sabín C, León J, Egusquiza IL, Gerritsma R, Roos CF, García-Ripoll JJ, Solano E: Quantum simulation of the majorana equation and unphysical operations. Phys Rev X 2011., 1: Article ID 021018 Sabín C, Casanova J, García-Ripoll JJ, Lamata L, Solano E, León J: Encoding relativistic potential dynamics into free evolution. Phys Rev A 2012., 85: Article ID 052301 Alvarez-Rodriguez U, Casanova J, Lamata L, Solano E: Quantum simulation of noncausal kinematic transformations. Phys Rev Lett 2013., 111: Article ID 090503 Rindler W: Relativity: special, general and cosmological. 2nd edition. Oxford University Press, Oxford; 2006. Flanagan EE, Hughes SA: The basics of gravitational wave theory. New J Phys 2005.,7(1): Article ID 204 Aufmuth P, Danzmann K: Gravitational wave detectors. New J Phys 2005., 7: Article ID 202 Sabín C, Bruschi DE, Ahmadi M, Fuentes I: Phonon creation by gravitational waves. New J Phys. 2014., 16: Article ID 085003 Moore GT: Quantum theory of the electromagnetic field in a variable length one dimensional cavity. J Math Phys 1970, 11:269. Wilson CM, Johansson G, Pourkabirian A, Simoen M, Johansson JR, Duty T, Nori F, Delsing P: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 2011, 479:376–379. 10.1038/nature10561 Visser M, Molina-Paris C: Acoustic geometry for general relativistic barotropic irrotational fluid flow. New J Phys 2010., 12: Article ID 095014 Fagnocchi S, Finazzi S, Liberati S, Kormos M, Trombettoni A: Relativistic Bose-Einstein condensates: a new system for analogue models of gravity. New J Phys 2010., 12: Article ID 095012 Bruschi DE, Sabín C, White A, Baccetti V, Oi DKL, Fuentes I: Testing the effects of gravity and motion on quantum entanglement in space-based experiments. New J Phys. 2014., 16: Article ID 053041 Barceló C, Liberati S, Visser M: Analogue gravity. Living Rev Relativ 2011., 14: Article ID 3 Garay LJ, Anglin JR, Cirac JI, Zoller P: Sonic analog of gravitational black holes in Bose-Einstein condensates. Phys Rev Lett 2000., 85: Article ID 4643 Schley R, Berkovitz A, Rinott S, Shammass I, Blumkin A, Steinhauer J: Planck distribution of phonons in a Bose-Einstein condensate. Phys Rev Lett 2013.,111(5): Article ID 055301 Steinahauer J: Observation of self-amplifying hawking radiation in an analogue black-hole laser. Nat Phys 2014, 10:864. 10.1038/nphys3104 Pethick CJ, Smith H: Bose Einstein condensation in dilute gases. Cambridge University Press, Cambridge; 2004. Schneider U, Hackermüller L, Ronzheimer JP, Will S, Braun S, Best T, Bloch I, Demler E, Mandt S, Rasch D, Rosch A: Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms. Nat Phys 2012, 8:213–218. 10.1038/nphys2205