Analog and Digital Performance of Graphene-Germanene-Graphene Heterojunction Based Field Effect Transistor

ECS Journal of Solid State Science and Technology - Tập 11 Số 9 - Trang 091005 - 2022
Mehran Vali1
1School of Physics, Damghan University, Damghan, Iran

Tóm tắt

In this study, by taking the advantage of electrical properties of graphene, silicene and germanene sheets we propose and analyze a heterojunction based field effect transistor. It is comprised of germanene sheet in the channel and gapless graphene in the source/drain regions. We investigate and compare the performances of proposed device from two points of view comprised of analog and digital applications. A comparative study is carried out with three other simulated devices including gapless graphene, germanene and graphene-silicene-graphene heterojunction based field effect transistors. Our theoretical analysis show that for digital applications, Ion/Ioff ratio in the proposed graphene-germanene-graphene (G-Ge-G) heterojunction based field effect transistor shows a significant better value than other counterpart simulated devices and reaches to 106. However for the analog applications, the output characteristic curves show different behavior for the simulated devices under study. The output characteristic of (G-Ge-G) heterojunction based field effect transistor displays a very good saturation which owes to improved pinch-off in the channel.

Từ khóa


Tài liệu tham khảo

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Novoselov, 2005, Nature, 438, 197, 10.1038/nature04233

Geim, 2007, Nat. Mater., 6, 183, 10.1038/nmat1849

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Ritter, 2009, Nat. Mater., 8, 235, 10.1038/nmat2378

Mativetsky, 2011, Am. Chem. Soc., 133, 14320, 10.1021/ja202371h

Meric, 2008, Nat. Nanotechnol., 3, 654, 10.1038/nnano.2008.268

Miro, 2014, Chem. Soc. Rev., 43, 6537, 10.1039/C4CS00102H

Schwierz, 2015, Nanoscale, 7, 8261, 10.1039/C5NR01052G

Naderi, 2016, Superlattices Microstruct., 89, 170, 10.1016/j.spmi.2015.11.005

Naderi, 2016, ECS J. Solid State Sci. Technol., 5, M131, 10.1149/2.0021612jss

Naderi, 2012, Superlattices Microstruct., 52, 962, 10.1016/j.spmi.2012.07.016

Anvarifard, 2020, physica status solidi (a), 217, 10.1002/pssa.201900879

Akbari Eshkalak, 2016, ECS J. Solid State Sci. Technol., 5, M141, 10.1149/2.0061612jss

Takeda, 1994, Phys. Rev. B, 50, 10.1103/PhysRevB.50.14916

Cahangirov, 2009, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.236804

Guzmn-Verri, 2007, Phys. Rev. B, 76, 10.1103/PhysRevB.76.075131

Liu, 2011, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.076802

Houssa, 2010, Appl. Phys. Lett., 96, 10.1063/1.3332588

Garcia, 2011, J. Phys.Chem. C, 115, 10.1021/jp203657w

Liu, 2011, Phys. Rev. B, 84, 10.1103/PhysRevB.84.195430

Zheng, 2021, Phys. Rev. Appl., 16, 10.1103/PhysRevApplied.16.024046

Ezawa, 2012, New J. Phys., 14, 10.1088/1367-2630/14/3/033003

Boettger, 2007, Phys. Rev. B, 75, 10.1103/PhysRevB.75.121402

Gmitra, 2009, Phys. Rev. B, 80, 10.1103/PhysRevB.80.235431

Abdelouahed, 2010, Phys. Rev. B, 82, 10.1103/PhysRevB.82.125424

Liu, 2011, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.076802

Ye, 2014, RSC Adv., 4, 10.1039/C4RA01802H

Bolotin, 2008, Solid State Commun., 146, 351, 10.1016/j.ssc.2008.02.024

Zomer, 2011, Appl. Phys. Lett., 99, 10.1063/1.3665405

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Datta, 1997

Wang, 2008, J. Appl. Phys., 104, 10.1063/1.3050326

Zhang, 2010, Appl. Phys. Lett., 96, 10.1063/1.3421536

Zhoua, 2016, Phys. Lett. A, 380, 1469, 10.1016/j.physleta.2016.02.014

Shen, 2014, Journal ofapplied physics, 115, 10.1063/1.4883193

Bermudez, 2010, New J. Phys., 12, 10.1088/1367-2630/12/3/033041

Soltan-Panahi, 2011, Nat.Phys., 7, 434, 10.1038/nphys1916

Meric, 2008, Nat. Nanotechnol., 3, 654, 10.1038/nnano.2008.268