An upstream region of the Arabidopsis thaliana CDKA;1 (CDC2aAt) gene directs transcription during trichome development

Plant Molecular Biology - Tập 46 - Trang 205-213 - 2001
Yoshiro Imajuku1, Yohei Ohashi1, Takashi Aoyama1, Koji Goto1, Atsuhiro Oka1
1Laboratory of Molecular Biology, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan

Tóm tắt

The cell cycle of eukaryotes is tightly regulated through the activity of cyclin-dependent kinases. The Arabidopsis thaliana CDKA;1 (CDC2aAt) gene is thought to encode such a protein kinase, since it is actively transcribed in proliferating tissues and can complement defects in the Schizosaccharomyces pombe cdc2 gene. We analyzed the functional structure of the CDKA;1 promoter, using fusion genes between various upstream regions of CDKA;1 and the Escherichia coli β-glucuronidase (GUS) gene. A 595 bp DNA fragment upstream from the transcription start site conferred GUS activity on developing trichomes, but not on proliferating tissues. On the other hand, another upstream fragment extending to the 5′ non-coding transcribed region gave GUS activity to both proliferating tissues and developing trichomes. Against the gl2 mutant background, GUS activity directed by the 595 bp fragment was detected in single-stalk cells, but not in giant cells without obvious polar extension growth. These results revealed that the 595 bp fragment lacks cis element(s) essential for proliferating-cell-specific promoter activity, but can direct transcription in a specific period during trichome development, which does not include cell division. This suggests that CDKA;1 functions during cell morphogenesis as well as cell proliferation.

Tài liệu tham khảo

Aoyama, T., Takanami, M. and Oka, A. 1989. Signal structure for transcriptional activation in the upstream regions of virulence genes on the hairy-root-inducing plasmid A4. Nucl. Acids Res. 17: 8711–8725. Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis plants. C.R. Acad. Sci. Paris. Life Sci. 316: 1194–1199. Blangy, A., Lane, H. A., d'Herin P., Harper, M., Kress, M. and Nigg, E. A. 1995. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83: 1159–1169. Burssens, S., Van Montagu, M. and Inzé, D. 1998. The cell cycle in Arabidopsis. Plant Physiol. Biochem. 36: 9–19. Chaubet, N., Flenet, M., Clement, B., Brignon, P. and Gigot, C. 1996. Identification of cis-elements regulating the expression of an Arabidopsis histone H4 gene. Plant J. 10: 425–435. Dolan, L. Janmaat, K., Willemsen, V., Linstead P., Poething, S., Roberts, K. and Scheres, B. 1993. Cellular organization of the Arabidopsis thaliana root. Development 119: 71–84. Ferreira, P. C. G., Hemerly, A. S., Villarroel, R., Van Montagu, M. and Inzé, D. 1991. The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell 3: 531–540. Fobert, P. R., Gaudin, V., Lunness, P., Coen, E. S. and Doonan, J.H. 1996. Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell 8: 1465–1476. Forsburg, S. and Nurse, P. 1991. Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annu. Rev. Cell Biol. 7: 227–256. Gendreau, E., Traas, J., Desnos, T., Grandjean, O., Caboche, M. and Hofte, H. 1997. Cellular basis of hypocotyl growth in Arabidopsis. Plant Physiol. 114: 295–305. Hemerly, A. S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G. and Inzé, D. 1993. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5: 1711–1723. Hirayama, T., Imajuku, Y., Anai, T., Matsui, M. and Oka, A. 1991. Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana. Gene 105: 159–165. Hulskamp, M., Misera, S. and Jugens, G. 1994. Genetic dissection of trichome cell development in Arabidopsis. Cell 76: 555–566. Hulskamp, M., Folkers U. and Grini, P. E. 1998. Cell morphogenesis in Arabidopsis. Bioessays 20: 20–29. Imajuku, Y., Hirayama, T., Endoh, H. and Oka, A. 1992. Exonintron organization of the Arabidopsis thaliana protein kinase genes CDC2a and CDC2b. FEBS Lett. 304: 73–77. Jacqmard, A., De Veylder, L., Segers, G., de Almeida Engler, J., Bernier, G., Van Montagu, M. and Inzé, D. 1999. Expression of CKS1At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and the endoreduplication cycle. Planta 207: 496–504. Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907. Joubes, J., Chevalier, C., Dudits, D., Heberle-Bors, E., Inzé, D., Umeda, M. and Renaudin, J.-P. 2000. CDK-related protein kinases in plants. Plant. Mol. Biol. 43: 607–620. Koornneef, M. 1981. The complex syndrome of ttg mutants. Arab. Inf. Serv. 18: 45–51. Koornneef, M., Dellaert, L. W. M. and van der Veen, J. H. 1982. EMS-and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana. Mutat. Res. 93: 109–123. MacAuley, A., Cross, J.C. and Werb, Z. 1998. Reprogramming the cell cycle for endoreduplication in rodent trophoblast cells. Mol. Biol. Cell 9: 795–807. Martinez, M. C., Jorgensen, J.-E., Lawton, M. A., Lamb, C. J. and Peter, W. D. 1992. Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc. Natl. Acad. Sci. USA 89: 7360–7364. Mathur, J., Spielhofer, P., Kost, B. and Chua, N.-H. 1999. The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126: 5559–5568. Mathur, J. and Chua, N.-H. 2000. Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell 12: 465–477. Melaragno, J. E., Mehrotra, B. and Coleman, A. W. 1993. Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5: 1661–1668. Mironov, V., De Veylder, L., Van Montagu, M. and Inzé, D. 1999. Cyclin-dependent kinase and cell division in plants: the nexus. Plant Cell 11: 509–521. Nabeshima, K., Kurokawa, H., Takeuchi, M., Kinoshita, K., Nakaseko, Y. and Yanagida, M. 1995. p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9: 1572–1585. Nigg, E. A. 1995. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17: 471–480. Nikolic, M., Dudek, H., Kwon, Y.T., Ramos, Y. F. M. and Tsai, L.-H. 1996. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10: 816–825 Nikolic, M., Chou, M. M., Lu, W., Mayer, B.J. and Tsai, L.-H. 1998. The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395: 194–198. Oppenheimer, D. G., Pollock, M. A., Vacik, J., Szmanski, D. B., Ericson, B., Feldmann, K. and Marks, M. D. 1997. Essential role of a kinesin-like protein in Arabidopsis trichome morohogenesis. Proc. Natl. Acad. Sci. USA 94: 6261–6266. Pines, J. 1993. Cyclins and cyclin-dependent kinases: take your partners. Trends Biochem. Sci. 18: 195–197. Reed, S. I. 1992. The role of p34 kinases in the G1 to S-phase transition. Annu. Rev. Cell Biol. 8: 529–561. Sambrook, J. Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY. Segers, G., Gadisseur, I., Bergounioux, C., de Almeida Engler, J., Bernier, G., Jacqmard, A., Van Montagu, M. and Inzé, D. 1996. The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases in the cell cycle. Plant J. 10: 601–612. Sigrist, S. J. and Lehner, C. F. 1997. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90: 671–681. Stals, H., Bauwens, S., Traas, J., Van Montagu, M., Engler, G. and Inzé, D. 1997. Plant CDC2 is not only targeted to the pre-prophase band, but also co-localizes with the spindle, phragmoplast, and chromosomes. FEBS Lett. 418: 229–234. Szymanski, D. B., Jilk, R.A., Pollock, S.M. and Marks, D. 1998. Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125: 1161–1171. Szymanski, D. B., Marks, M. D. and Wick, S. M. 1999. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11: 2331–2347. Traas, J., Hulskamp, M., Gendreau, E. and Hofte, H. 1998. Endoreduplication and development: rule without dividing? Curr. Opin. Plant Biol. 1: 498–503. Valvekens, D., Van Montagu, M. and Van Lijsebettens M. 1988. Agrobacterium tumefaciens-mediated transformation of Arabidopsis root explants using kanamycin selection. Proc. Natl. Acad. Sci. USA 85: 5536–5540. Verde, F., Labbe, J. C., Doree, M. and Karsenti, E. 1990. regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343: 233–238.