An upper body garment with integrated sensors for people with neurological disorders – early development and evaluation

BMC Biomedical Engineering - Tập 1 - Trang 1-13 - 2019
Margit Alt Murphy1, Filip Bergquist1,2, Bengt Hagström3,4, Niina Hernández5, Dongni Johansson1, Fredrik Ohlsson6, Leif Sandsjö7,8, Jan Wipenmyr6, Kristina Malmgren1,9
1Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
2Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
3Department of Materials, Swerea IVF, Mölndal, Sweden
4Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden
5Swedish School of Textiles, University of Borås, Borås, Sweden
6RISE Acreo, Gothenburg, Sweden
7MedTech West/Faculty of Caring Science, Work Life and Social Welfare, University of Borås, Borås, Sweden
8Department of Industrial and Materials Science, Division of Design & Human Factors, Chalmers University of Technology, Gothenburg, Sweden
9Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden

Tóm tắt

In neurology and rehabilitation the primary interest for using wearables is to supplement traditional patient assessment and monitoring in hospital settings with continuous data collection at home and in community settings. The aim of this project was to develop a novel wearable garment with integrated sensors designed for continuous monitoring of physiological and movement related variables to evaluate progression, tailor treatments and improve diagnosis in epilepsy, Parkinson’s disease and stroke. In this paper the early development and evaluation of a prototype designed to monitor movements and heart rate is described. An iterative development process and evaluation of an upper body garment with integrated sensors included: identification of user needs, specification of technical and garment requirements, garment development and production as well as evaluation of garment design, functionality and usability. The project is a multidisciplinary collaboration with experts from medical, engineering, textile, and material science within the wearITmed consortium. The work was organized in regular meetings, task groups and hands-on workshops. User needs were identified using results from a mixed-methods systematic review, a focus group study and expert groups. Usability was evaluated in 19 individuals (13 controls, 6 patients with Parkinson’s disease) using semi-structured interviews and qualitative content analysis. The garment was well accepted by the users regarding design and comfort, although the users were cautious about the technology and suggested improvements. All electronic components passed a washability test. The most robust data was obtained from accelerometer and gyroscope sensors while the electrodes for heart rate registration were sensitive to motion artefacts. The algorithm development within the wearITmed consortium has shown promising results. The prototype was accepted by the users. Technical improvements are needed, but preliminary data indicate that the garment has potential to be used as a tool for diagnosis and treatment selection and could provide added value for monitoring seizures in epilepsy, fluctuations in PD and activity levels in stroke. Future work aims to improve the prototype further, develop algorithms, and evaluate the functionality and usability in targeted patient groups. The potential of incorporating blood pressure and heart-rate variability monitoring will also be explored.

Tài liệu tham khảo

Bergmann JH, McGregor AH. Body-worn sensor design: what do patients and clinicians want? Ann Biome Eng. 2011;39:2299–312. https://doi.org/10.1007/s10439-011-0339-9. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21. https://doi.org/10.1186/1743-0003-9-21. World Health Organization. World report on disbility. WHO library cataloguing-in-publication data. 2011. Aarli JA. Neurological disorders : public health challenges. Geneva: World Health Organization; 2006. Group GBDNDC. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol. 2017;16:877–97. https://doi.org/10.1016/S1474-4422(17)30299-5. Kunst AE, Amiri M, Janssen F. The decline in stroke mortality: exploration of future trends in 7 Western European countries. Stroke. 2011;42:2126–30. https://doi.org/10.1161/STROKEAHA.110.599712. Hallstrom B, Jonsson AC, Nerbrand C, Norrving B, Lindgren A. Stroke incidence and survival in the beginning of the 21st century in southern Sweden: comparisons with the late 20th century and projections into the future. Stroke. 2008;39:10–5. https://doi.org/10.1161/STROKEAHA.107.491779. McLaren R, Joseph F, Baguley C, Taylor D. A review of e-textiles in neurological rehabilitation: how close are we? J Neuroeng Rehabil. 2016;13:59. https://doi.org/10.1186/s12984-016-0167-0. Askim T, Bernhardt J, Churilov L, Fredriksen KR, Indredavik B. Changes in physical activity and related functional and disability levels in the first six months after stroke: a longitudinal follow-up study. J Rehabil Med. 2013;45:423–8. https://doi.org/10.2340/16501977-1137. Gebruers N, Truijen S, Engelborghs S, De Deyn PP. Predictive value of upper-limb accelerometry in acute stroke with hemiparesis. J Rehabil Res Dev. 2013;50:1099–106. https://doi.org/10.1682/JRRD.2012.09.0166. Gebruers N, Vanroy C, Truijen S, Engelborghs S, De Deyn PP. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91:288–97. https://doi.org/10.1016/j.apmr.2009.10.025. Sanchez MC, Bussmann J, Janssen W, Horemans H, Chastin S, Heijenbrok M, et al. Accelerometric assessment of different dimensions of natural walking during the first year after stroke: recovery of amount, distribution, quality and speed of walking. J Rehabil Med. 2015. https://doi.org/10.2340/16501977-1994. Wang Q, Markopoulos P, Yu B, Chen W, Timmermans A. Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil. 2017;14:20. https://doi.org/10.1186/s12984-017-0229-y. Giuffrida JP, Riley DE, Maddux BN, Heldman DA. Clinically deployable Kinesia technology for automated tremor assessment. Mov Disord. 2009;24:723–30. https://doi.org/10.1002/mds.22445. Griffiths RI, Kotschet K, Arfon S, Xu ZM, Johnson W, Drago J, et al. Automated assessment of bradykinesia and dyskinesia in Parkinson's disease. J Parkinsons Dis. 2012;2:47–55. https://doi.org/10.3233/JPD-2012-11071.. Bayly J, Carino J, Petrovski S, Smit M, Fernando DA, Vinton A, et al. Time-frequency mapping of the rhythmic limb movements distinguishes convulsive epileptic from psychogenic nonepileptic seizures. Epilepsia. 2013;54:1402–8. https://doi.org/10.1111/epi.12207. Beniczky S, Polster T, Kjaer TW, Hjalgrim H. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia. 2013;54:e58–61. https://doi.org/10.1111/epi.12120. Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 2018;17:279–88. https://doi.org/10.1016/S1474-4422(18)30038-3. Hellman AM, Shah SP, Pawlowski SM, Duda JE, Morley JF. Continuous non-invasive monitoring to detect covert autonomic dysfunction in Parkinson's disease. Parkinsonism Relat Disord. 2015;21:723–8. https://doi.org/10.1016/j.parkreldis.2015.04.016. Oess NP, Wanek J, Curt A. Design and evaluation of a low-cost instrumented glove for hand function assessment. J Neuroeng Rehabil. 2012;9:2. https://doi.org/10.1186/1743-0003-9-2. Mountain G, Wilson S, Eccleston C, Mawson S, Hammerton J, Ware T, et al. Developing and testing a telerehabilitation system for people following stroke: issues of usability. J Eng Des. 2010;21:223–36. Wang Q, De Baets L, Timmermans A, Chen W, Giacolini L, Matheve T, et al. Motor control training for the shoulder with smart garments. Sensors (Basel). 2017;17. https://doi.org/10.3390/s17071687. Giorgino T, Tormene P, Maggioni G, Capozzi D, Quaglini S, Pistarini C. Assessment of sensorized garments as a flexible support to self-administered post-stroke physical rehabilitation. Eur J Phys Rehabil Med. 2009;45:75–84 http://www.ncbi.nlm.nih.gov/pubmed/19293756. Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014;11:76. https://doi.org/10.1186/1743-0003-11-76. Connell BR, Jones M, Mace R, Mueller J, Mullick A, Ostroff E, et al. The Principles of Universal Design NC State University: The Center for Universal Design; 1997. Clarkson J. Inclusive design toolkit. Cambridge: Engineering Design Centre, University of Cambridge; 2007. Imrie R, Luck R. Designing inclusive environments: rehabilitating the body and the relevance of universal design. Disabil Rehabil. 2014;36:1315–9. https://doi.org/10.3109/09638288.2014.936191. Johansson D, Malmgren K, Alt Murphy M. Wearable sensors for clinical applications in epilepsy, Parkinson's disease, and stroke: a mixed-methods systematic review. J Neurol. 2018. https://doi.org/10.1007/s00415-018-8786-y. Cancela J, Pastorino M, Tzallas AT, Tsipouras MG, Rigas G, Arredondo MT, et al. Wearability assessment of a wearable system for Parkinson's disease remote monitoring based on a body area network of sensors. Sensors (Basel). 2014;14:17235–55. https://doi.org/10.3390/s140917235.. Hoppe C, Poepel A, Elger CE. Epilepsy: accuracy of patient seizure counts. Arch Neurol. 2007;64:1595–9. https://doi.org/10.1001/archneur.64.11.1595. Zhao Y, Heida T, van Wegen EE, Bloem BR, van Wezel RJ. E-health support in people with Parkinson's disease with smart glasses: a survey of user requirements and expectations in the Netherlands. J Parkinsons Dis. 2015. https://doi.org/10.3233/JPD-150568. Fisher JM, Hammerla NY, Rochester L, Andras P, Walker RW. Body-worn sensors in Parkinson's disease: evaluating their acceptability to patients. Telemed J E Health. 2016;22:63–9. https://doi.org/10.1089/tmj.2015.0026. Simone LK, Sundarrajan N, Luo X, Jia Y, Kamper DG. A low cost instrumented glove for extended monitoring and functional hand assessment. J Neurosci Methods. 2007;160:335–48. https://doi.org/10.1016/j.jneumeth.2006.09.021. Ozanne A, Johansson D, Hallgren Graneheim U, Malmgren K, Bergquist F, Alt Murphy M. Wearables in epilepsy and Parkinson’s disease-a focus group study. Acta Neurol Scand. 2018;137:188–94. https://doi.org/10.1111/ane.12798. Czarnecki M, Gustafsson N. Machine learning for detection of epileptic seizures. Master Theses. Departement of Signals & Systems, Chalmers University of Technology, Gothenburg, Sweden; 2015. p. EX028/2015. Ohlsson F, Czarnecki M, Gustafsson N, Wipenmyr J, Krysl D, Rydenhag B, et al. Statistical learning methods for detection of generalized tonic-clonic seizures in accelerometer data. Epilepsia. 2016;57(Issue Supplement S2, P275):86 Available from: http://onlinelibrary.wiley.com/doi/10.1111/epi.13609/epdf. Alt Murphy M, Andersson S, Danielsson A, Ohlsson F, Wipenmyr J. Acceleration based activity levels during subacute inpatient stroke rehabilitation. Procedia Technol. 2017;27:120–1. Smith RO, Scherer M, Cooper R, Bell D, Hobbs DA, Pettersson C, et al. Assistive technology products: a position paper from the first global research, innovation, and education on assistive technology (GREAT) summit. Disabil Rehabil Assist Technol. 2018:1–13. https://doi.org/10.1080/17483107.2018.1473895.. Leijten FSS, Dutch TeleEpilepsy C. Multimodal seizure detection: A review. Epilepsia. 2018;59 Suppl 1:42–7. https://doi.org/10.1111/epi.14047. Del Din S, Godfrey A, Mazza C, Lord S, Rochester L. Free-living monitoring of Parkinson's disease: lessons from the field. Mov Disord. 2016;31:1293–313. https://doi.org/10.1002/mds.26718. Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR. Quantitative wearable sensors for objective assessment of Parkinson's disease. Mov Disord. 2013;28:1628–37. https://doi.org/10.1002/mds.25628. Cuppens K, Karsmakers P, Van de Vel A, Bonroy B, Milosevic M, Luca S, et al. Accelerometry-based home monitoring for detection of nocturnal hypermotor seizures based on novelty detection. IEEE J Biomed Health Inform. 2014;18:1026–33. https://doi.org/10.1109/JBHI.2013.2285015. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43. https://doi.org/10.1136/svn-2017-000101. Hardelin L, Hagstrom B. Wet spun fibers from solutions of cellulose in an ionic liquid with suspended carbon nanoparticles. J Appl Polym Sci. 2015;132. https://doi.org/10.1002/app.41417. Nilsson E, Lund A, Jonasson C, Johansson C, Hagstrom B. Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sensor Actuat A-Phys. 2013;201:477–86. https://doi.org/10.1016/j.sna.2013.08.011. Graneheim UH, Lundman B. Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness. Nurse Educ Today. 2004;24:105–12. https://doi.org/10.1016/j.nedt.2003.10.001.