An updated coupled model for land-atmosphere interaction. Part I: Simulations of physical processes
Tóm tắt
A new two-way land-atmosphere interaction model (R42_AVIM) is fulfilled by coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM). In this coupled model, physical and biological components of AVIM are both included. Climate base state and land surface physical fluxes simulated by R42_AVIM are analyzed and compared with the results of R42_SSIB [which is coupled by SAMIL_R42L9 and Simplified Simple Biosphere (SSIB) models]. The results show the performance of the new model is closer to the observations. It can basically guarantee that the land surface energy budget is balanced, and can simulate June-July-August (JJA) and December-January-February (DJF) land surface air temperature, sensible heat flux, latent heat flux, precipitation, sea level pressure and other variables reasonably well. Compared with R42 SSIB, there are obvious improvements in the JJA simulations of surface air temperature and surface fluxes. Thus, this land-atmosphere coupled model will offer a good experiment platform for land-atmosphere interaction research.
Tài liệu tham khảo
Bonan, G., 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, 678pp.
Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101(428), 193–202.
Charney, J. G., W. J. Quirk, S. H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semiarid regions. J. Atmos. Sci., 34(9), 1366–1385.
Cox, P. M., 2001: Bringing life and carbon to the GCM land surface processes. BAHC/GEWEX News Joint Issue, 10–11.
Dan, L., J. J. Ji, and Y. P. Li, 2005: Climatic and biological simulations in a two-way coupled atmosphericbiosphere model (CABM). Global and Planetary Change, 47, 153–169.
Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719.
Foley, J. A., S. Levis, I. C. Prentice, D. Pollard, and S. L. Thompson, 1998: Coupling dynamic models of climate and vegetation. Global Change Biology, 4, 561–579.
Ji, J. J., 1995: A climate-vegetation interaction model: Simulating physical and biological processes at the surface. Journal of Biogeography, 22, 445–451.
Ji, J. J., and Y. C. Hu, 1989: A simple land surface process model for use in climate studies. Acta Meteorologica Sinica, 3, 342–351.
Ji, J. J., and L. Yu, 1999: A simulation study of coupled feedback mechanism between physical and biogeochemical processes at the surface. Chinese J. Atmos. Sci., 23, 439–448.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.
Kaufmann, R. K., R. B. Myneri, C. J. Tucker, D. Slayback, N. V. Shabanov, and J. Pinzon, 2003: The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett., 30, 2147.
Li, Y. P., and J. J. Ji, 2001: Model estimates of global carbon flux between vegetation and the atmosphere. Adv. Atmos. Sci., 18, 807–818.
Lu, J. H., 1999: The regional simulation of interaction between atmosphere and vegetation at seasonal and interannual scale. Ph. D dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 160pp. (in Chinese)
Lu, J. H., and J. J. Ji, 2002a: A simulation study of atmosphere-vegetation interactions over the Tibetan Plateau, Part I: Physical fluxes and parameters. Chinese J. Atmos. Sci., 26, 111–126. (in Chinese)
Lu, J. H., and J. J. Ji, 2002b: A simulation study of atmosphere-vegetation interactions over the Tibetan Plateau, Part II: net primary productivity and leaf index. Chinese J. Atmos. Sci., 26, 254–262. (in Chinese)
Lu, J. H., and J. J. Ji, 2006: A simulation and mechanism analysis of long-term variations at land surface over arid/semi-arid area in north China. J. Geophys. Res., 111, D09306, doi: 10.1029/2005JD006252
Lu, L., R. A. Pielke, Sr., G. E. Liston, W. Parton, D. Ojima, and M. Hartman, 2001: Implementation of a two-way interactive atmospheric and ecological model and its application to the Central United States. J. Climate, 14, 900–919.
Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769–798.
Pielke, R., R. Avissar, M. Raupach, A. J. Dolman, X. Zhen, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biology, 4, 461–475.
Sellers, P. J., 1992: Biophysical models of land surface processes. Climate System Modeling, K. E. Trenberth Ed., Cambridge University Press, 451–490.
Shukla, J., and Y. Mintz, 1982: The influence of landsurface evapotranspiration on Earth’s climate. Science, 215, 1498–1501.
Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 project plan. ERA-40 Project Report Series, No. 1, European Center for Medium-Range Weather Forecasts, Reading, U. K., 31pp.
Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899–927.
Snyder, P. K., J. A. Foley, M. H. Hitchman, and C. Delire, 2004: Analyzing the effects of complete tropical forest removal on the regional climate using a detailed three-dimensional energy budget: A application to Africa. J. Geophys. Res., 109, D21102, doi: 10.1029/2003JD004462.
Sud, Y. C., and W. E. Smith, 1985: The Influence of land surface roughness of deserts on the July circulation-A numerical study. Bound.-Layer Meteor., 33(1), 15–49.
Tsvetsinskaya, E. A., L. O. Mearns, and W. E. Easterling, 2001: Investigating the effect of seasonal plant growth and development in 3-dimensional atmospheric simulations: Part I. Simulations of Surface Fluxes over the Growing Season. J. Climate, 14, 692–709.
Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012. doi: 10.1256/qj.04.176
Wang, Z. Z., G. X. Wu, T. W. Wu, and R. C. Yu, 2004: Simulation of Asia monsoon seasonal variations with climate model R42L9/LASG. Adv. Atmos. Sci., 21, 879–889.
Wu, T.W., P. Liu, Z. Z. Wang, Y. M. Liu, R. C. Yu, and G. X. Wu, 2003: The performance of Atmospheric Component Model R42L9 of GOALS/LASG. Adv. Atmos. Sci., 20, 726–742.
Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840–858.
Yeh, T. C., R. I. Wetherald, and S. Manabe, 1984: The effects of soil moisture on the short-term climate and hydrology change—A numerical experiment. Mon. Wea. Rev., 112, 474–490.
Zhang, X. H., G. Y. Shi, H. Liu, and Y. Q. Yu, 2000: IAP Global Ocean-Atmosphere-Land System Model, Science Press, Beijing, 252pp.
Zeng, Q. C., 1963: Characteristic parameter and dynamical equation of atmospheric motions. Acta Meteoroogica Sinica, 33, 472–483. (in Chinese)