An update on inflammatory choroidal neovascularization: epidemiology, multimodal imaging, and management
Tóm tắt
Từ khóa
Tài liệu tham khảo
Neri P, Lettieri M, Fortuna C, Manoni M, Giovannini A (2009) Inflammatory choroidal neovascularization. Middle East Afr J Ophthalmol 16(4):245–251. https://doi.org/10.4103/0974-9233.58422
Dhingra N, Kelly S, Majid MA, Bailey CB, Dick AD (2010) Inflammatory choroidal neovascular membrane in posterior uveitis-pathogenesis and treatment. Indian J Ophthalmol 58(1):3–10. https://doi.org/10.4103/0301-4738.58467
Bansal R, Bansal P, Gupta A et al (2017) Diagnostic challenges in inflammatory choroidal neovascular membranes. Ocul Immunol Inflamm 25(4):554–562. https://doi.org/10.3109/09273948.2016.1160128
Ahnood D, Madhusudhan S, Tsaloumas MD, Waheed NK, Keane PA, Denniston AK (2017) Punctate inner choroidopathy: a review. Surv Ophthalmol 62(2):113–126. https://doi.org/10.1016/j.survophthal.2016.10.003
Baxter SL, Pistilli M, Pujari SS et al (2013) Risk of choroidal neovascularization among the uveitides. Am J Ophthalmol 156(3):468–477.e2. https://doi.org/10.1016/j.ajo.2013.04.040
Liu B, Faia L, Hu M, Nussenblatt RB (2010) Pro-angiogenic effect of IFNgamma is dependent on the PI3K/mTOR/translational pathway in human retinal pigmented epithelial cells. Mol Vis 16:184–193
Cohen SY, Laroche A, Leguen Y, Soubrane G, Coscas GJ (1996) Etiology of choroidal neovascularization in young patients. Ophthalmology 103(8):1241–1244
Grossniklaus HE, Green WR (2004) Choroidal neovascularization. Am J Ophthalmol 137(3):496–503. https://doi.org/10.1016/j.ajo.2003.09.042
Miller DG, Singerman LJ (2006) Vision loss in younger patients: a review of choroidal neovascularization. Optom Vis Sci 83(5):316–325. https://doi.org/10.1097/01.opx.0000216019.88256.eb
Winterhalter S, Joussen AM, Pleyer U, Stübiger N (2012) Inflammatory choroidal neovascularisations. Klin Monatsbl Augenheilkd 229(9):897–904. https://doi.org/10.1055/s-0032-1315249
Fine SL, Owens SL, Haller JA, Knox DL, Patz A (1981) Choroidal neovascularization as a late complication of ocular toxoplasmosis. Am J Ophthalmol 91(3):318–322
Lampariello DA, Primo SA (1999) Ocular toxocariasis: a rare presentation of a posterior pole granuloma with an associated choroidal neovascular membrane. J Am Optom Assoc 70(4):245–252
Chung YM, Yeh TS, Sheu SJ, Liu JH (1989) Macular subretinal neovascularization in choroidal tuberculosis. Ann Ophthalmol 21(6):225–229
Deutman AF, Grizzard WS (1978) Rubella retinopathy and subretinal neovascularization. Am J Ophthalmol 85(1):82–87
null H, null T, null M (2000) Neovascular maculopathy associated with rubella retinopathy. Jpn J Ophthalmol 44(6):697
Khairallah M, Ben Yahia S, Attia S, Jelliti B, Zaouali S, Ladjimi A (2006) Severe ischemic maculopathy in a patient with West Nile virus infection. Ophthalmic Surg Lasers Imaging 37(3):240–242
Wilson ME, Mazur DO (1988) Choroidal neovascularization in children: report of five cases and literature review. J Pediatr Ophthalmol Strabismus 25(1):23–29
Roy R, Saurabh K, Bansal A, Kumar A, Majumdar AK, Paul SS (2017) Inflammatory choroidal neovascularization in Indian eyes: etiology, clinical features, and outcomes to anti-vascular endothelial growth factor. Indian J Ophthalmol 65(4):295–300. https://doi.org/10.4103/ijo.IJO_262_16
D’Ambrosio E, Tortorella P, Iannetti L (2014) Management of uveitis-related choroidal neovascularization: from the pathogenesis to the therapy. J Ophthalmol 2014:450428. https://doi.org/10.1155/2014/450428
Invernizzi A, Agarwal A, Di Nicola M, Franzetti F, Staurenghi G, Viola F (2017) Choroidal neovascular membranes secondary to intraocular tuberculosis misdiagnosed as neovascular age-related macular degeneration. Eur J Ophthalmol October 0. https://doi.org/10.5301/ejo.5001047
Told R, Sacu S, Hecht A et al (2018) Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 59(6):2393–2400. https://doi.org/10.1167/iovs.17-22902
Gass JD (1984) Pathogenesis of tears of the retinal pigment epithelium. Br J Ophthalmol 68(8):513–519
Grossniklaus HE, Gass JD (1998) Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. Am J Ophthalmol 126(1):59–69
Lu M, Adamis AP (2006) Molecular biology of choroidal neovascularization. Ophthalmol Clin N Am 19(3):323–334. https://doi.org/10.1016/j.ohc.2006.05.001
Ba J, Peng R-S, Xu D et al (2015) Intravitreal anti-VEGF injections for treating wet age-related macular degeneration: a systematic review and meta-analysis. Drug Des Devel Ther 9:5397–5405. https://doi.org/10.2147/DDDT.S86269
Chang JH, McCluskey PJ, Wakefield D (2005) Acute anterior uveitis and HLA-B27. Surv Ophthalmol 50(4):364–388. https://doi.org/10.1016/j.survophthal.2005.04.003
Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K, SEVEN-UP Study Group (2013) Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 120(11):2292–2299. https://doi.org/10.1016/j.ophtha.2013.03.046
Kaiser PK, Brown DM, Zhang K et al (2007) Ranibizumab for predominantly classic neovascular age-related macular degeneration: subgroup analysis of first-year ANCHOR results. Am J Ophthalmol 144(6):850–857. https://doi.org/10.1016/j.ajo.2007.08.012
Agarwal A, Aggarwal K, Gupta V (2016) Management of neovascular age-related macular degeneration: a review on landmark randomized controlled trials. Middle East Afr J Ophthalmol. 23(1):27–37. https://doi.org/10.4103/0974-9233.173133
Brown DM, Regillo CD (2007) Anti-VEGF agents in the treatment of neovascular age-related macular degeneration: applying clinical trial results to the treatment of everyday patients. Am J Ophthalmol 144(4):627–637. https://doi.org/10.1016/j.ajo.2007.06.039
Do DV, Gower EW, Cassard SD et al (2012) Detection of new-onset choroidal neovascularization using optical coherence tomography: the AMD DOC study. Ophthalmology 119(4):771–778. https://doi.org/10.1016/j.ophtha.2011.10.019
Kotsolis AI, Killian FA, Ladas ID, Yannuzzi LA (2010) Fluorescein angiography and optical coherence tomography concordance for choroidal neovascularisation in multifocal choroidtis. Br J Ophthalmol 94(11):1506–1508. https://doi.org/10.1136/bjo.2009.159913
Bischoff PM, Flower RW (1985) Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue? Doc Ophthalmol 60(3):235–291
Agrawal RV, Biswas J, Gunasekaran D (2013) Indocyanine green angiography in posterior uveitis. Indian J Ophthalmol 61(4):148–159. https://doi.org/10.4103/0301-4738.112159
Atmaca LS, Batioğlu F, Atmaca P (1996) Evaluation of choroidal neovascularization in age-related macular degeneration with fluorescein and indocyanine green videoangiography. Ophthalmologica 210(3):148–151. https://doi.org/10.1159/000310695
Rush RB, Rush SW (2015) Evaluation of idiopathic choroidal neovascularization with indocyanine green angiography in patients undergoing bevacizumab therapy. J Ophthalmol 2015:642624. https://doi.org/10.1155/2015/642624
Perentes Y, Van Tran T, Sickenberg M, Herbort CP (2005) Subretinal neovascular membranes complicating uveitis: frequency, treatments, and visual outcome. Ocul Immunol Inflamm 13(2–3):219–224. https://doi.org/10.1080/09273940490518883
Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27(1):45–88. https://doi.org/10.1016/j.preteyeres.2007.07.005
Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58(5):387–429. https://doi.org/10.1016/j.survophthal.2012.12.001
Wu K, Zhang X, Su Y et al (2016) Clinical characteristics of inflammatory choroidal neovascularization in a Chinese population. Ocul Immunol Inflamm 24(3):261–267. https://doi.org/10.3109/09273948.2015.1015741
Sulzbacher F, Kiss C, Munk M, Deak G, Sacu S, Schmidt-Erfurth U (2011) Diagnostic evaluation of type 2 (classic) choroidal neovascularization: optical coherence tomography, indocyanine green angiography, and fluorescein angiography. Am J Ophthalmol 152(5):799–806.e1. https://doi.org/10.1016/j.ajo.2011.04.011
Hoang QV, Cunningham ET, Sorenson JA, Freund KB (2013) The “pitchfork sign” a distinctive optical coherence tomography finding in inflammatory choroidal neovascularization. Retina (Philadelphia, Pa) 33(5):1049–1055. https://doi.org/10.1097/IAE.0b013e31827e25b8
Giani A, Luiselli C, Esmaili DD et al (2011) Spectral-domain optical coherence tomography as an indicator of fluorescein angiography leakage from choroidal neovascularization. Invest Ophthalmol Vis Sci 52(8):5579–5586. https://doi.org/10.1167/iovs.10-6617
Arevalo JF, Adan A, Berrocal MH et al (2011) Intravitreal bevacizumab for inflammatory choroidal neovascularization: results from the Pan-American Collaborative Retina Study Group at 24 months. Retina (Philadelphia, Pa) 31(2):353–363. https://doi.org/10.1097/IAE.0b013e3181ed8cec
Mansour AM, Arevalo JF, Ziemssen F et al (2009) Long-term visual outcomes of intravitreal bevacizumab in inflammatory ocular neovascularization. Am J Ophthalmol 148(2):310–316.e2. https://doi.org/10.1016/j.ajo.2009.03.023
Amer R, Priel E, Kramer M (2015) Spectral-domain optical coherence tomographic features of choroidal neovascular membranes in multifocal choroiditis and punctate inner choroidopathy. Graefes Arch Clin Exp Ophthalmol 253(6):949–957. https://doi.org/10.1007/s00417-015-2930-5
Spaide RF, Goldberg N, Freund KB (2013) Redefining multifocal choroiditis and panuveitis and punctate inner choroidopathy through multimodal imaging. Retina (Philadelphia, Pa) 33(7):1315–1324. https://doi.org/10.1097/IAE.0b013e318286cc77
Astroz P, Miere A, Mrejen S et al (2018) Optical coherence tomography angiography to distinguish choroidal neovascularization from macular inflammatory lesions in multifocal choroiditis. Retina (Philadelphia, Pa) 38(2):299–309. https://doi.org/10.1097/IAE.0000000000001617
Agrawal R, Xin W, Keane PA, Chhablani J, Agarwal A (2016) Optical coherence tomography angiography: a non-invasive tool to image end-arterial system. Expert Rev Med Devices 13(6):519–521. https://doi.org/10.1080/17434440.2016.1186540
Yu S, Lu J, Cao D et al (2016) The role of optical coherence tomography angiography in fundus vascular abnormalities. BMC Ophthalmol 16:107. https://doi.org/10.1186/s12886-016-0277-2
Hagag AM, Gao SS, Jia Y, Huang D (2017) Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol 7(3):115–129. https://doi.org/10.4103/tjo.tjo_31_17
Sambhav K, Grover S, Chalam KV (2017) The application of optical coherence tomography angiography in retinal diseases. Surv Ophthalmol 62(6):838–866. https://doi.org/10.1016/j.survophthal.2017.05.006
Pichi F, Sarraf D, Morara M, Mazumdar S, Neri P, Gupta V (2017) Pearls and pitfalls of optical coherence tomography angiography in the multimodal evaluation of uveitis. J Ophthalmic Inflamm Infect 7(1):20. https://doi.org/10.1186/s12348-017-0138-z
Pichi F, Sarraf D, Arepalli S et al (2017) The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 59:178–201. https://doi.org/10.1016/j.preteyeres.2017.04.005
Xue J, Camino A, Bailey ST, Liu X, Li D, Jia Y (2018) Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes. Biomed Opt Express 9(7):3208–3219. https://doi.org/10.1364/BOE.9.003208
Jia Y, Bailey ST, Wilson DJ et al (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7):1435–1444. https://doi.org/10.1016/j.ophtha.2014.01.034
de Carlo TE, Bonini Filho MA, Chin AT et al (2015) Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology 122(6):1228–1238. https://doi.org/10.1016/j.ophtha.2015.01.029
Lupidi M, Cerquaglia A, Chhablani J et al (2018) Optical coherence tomography angiography in age-related macular degeneration: the game changer. Eur J Ophthalmol 28(4):349–357. https://doi.org/10.1177/1120672118766807
de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5. https://doi.org/10.1186/s40942-015-0005-8
Mrejen S, Giocanti-Auregan A, Tabary S, Cohen SY (2018) Sensitivity of 840-nm spectral domain optical coherence tomography angiography in detecting type 1 neovascularization according to the height of the associated pigment epithelial detachment. Retina (Philadelphia, Pa). https://doi.org/10.1097/IAE.0000000000002244
Nikolopoulou E, Lorusso M, Micelli Ferrari L et al (2018) Optical coherence tomography angiography versus dye angiography in age-related macular degeneration: sensitivity and specificity analysis. Biomed Res Int 2018:6724818. https://doi.org/10.1155/2018/6724818
Tan ACS, Freund KB, Balaratnasingam C, Simhaee D, Yannuzzi LA (2017) Imaging of pigment epithelial detachments with optical coherence tomography angiography. Retina (Philadelphia, PA). https://doi.org/10.1097/IAE.0000000000002016
Abu El-Asrar AM, Struyf S, Kangave D et al (2012) Cytokine and CXC chemokine expression patterns in aqueous humor of patients with presumed tuberculous uveitis. Cytokine 59(2):377–381. https://doi.org/10.1016/j.cyto.2012.04.030
Faridi A, Jia Y, Gao SS et al (2017) Sensitivity and specificity of OCT angiography to detect choroidal neovascularization. Ophthalmol Retina 1(4):294–303. https://doi.org/10.1016/j.oret.2017.02.007
Anegondi N, Chidambara L, Bhanushali D, Gadde SGK, Yadav NK, Sinha Roy A (2018) An automated framework to quantify areas of regional ischemia in retinal vascular diseases with OCT angiography. J Biophotonics 11(2). https://doi.org/10.1002/jbio.201600312
Al-Sheikh M, Iafe NA, Phasukkijwatana N, Sadda SR, Sarraf D (2018) Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography. Retina (Philadelphia, Pa) 38(2):220–230. https://doi.org/10.1097/IAE.0000000000001628
Kuehlewein L, Bansal M, Lenis TL et al (2015) Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol 160(4):739–748.e2. https://doi.org/10.1016/j.ajo.2015.06.030
Roisman L, Zhang Q, Wang RK et al (2016) Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. Ophthalmology 123(6):1309–1319. https://doi.org/10.1016/j.ophtha.2016.01.044
Ahmed D, Stattin M, Graf A et al (2017) Detection of treatment-naive choroidal neovascularization in age-related macular degeneration by swept source optical coherence tomography angiography. Retina (Philadelphia, PA). https://doi.org/10.1097/IAE.0000000000001832
Miere A, Butori P, Cohen SY et al (2017) Vascular remodeling of choroidal neovascularization after anti-vascular endothelial growth factor therapy visualized on optical coherence tomography angiography. Retina (Philadelphia, PA). https://doi.org/10.1097/IAE.0000000000001964
Cheng L, Chen X, Weng S et al (2016) Spectral-domain optical coherence tomography angiography findings in multifocal choroiditis with active lesions. Am J Ophthalmol 169:145–161. https://doi.org/10.1016/j.ajo.2016.06.029
Zahid S, Chen KC, Jung JJ et al (2017) Optical coherence tomography angiography of chorioretinal lesions due to idiopathic multifocal choroiditis. Retina (Philadelphia, Pa) 37(8):1451–1463. https://doi.org/10.1097/IAE.0000000000001381
Yee HY, Keane PA, Ho SL, Agrawal R (2016) Optical coherence tomography angiography of choroidal neovascularization associated with tuberculous serpiginous-like choroiditis. Ocul Immunol Inflamm 24(6):699–701. https://doi.org/10.3109/09273948.2015.1109669
Levison AL, Baynes KM, Lowder CY, Kaiser PK, Srivastava SK (2017) Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophthalmol 101(5):616–622. https://doi.org/10.1136/bjophthalmol-2016-308806
Nozaki M, Hamada S, Kimura M, Yoshida M, Ogura Y (2016) Value of OCT angiography in the diagnosis of choroidal neovascularization complicating multiple evanescence white dot syndrome. Ophthalmic Surg Lasers Imaging Retina. 47(6):580–584. https://doi.org/10.3928/23258160-20160601-11
Parodi MB, Iacono P, La Spina C et al (2014) Intravitreal bevacizumab for choroidal neovascularisation in serpiginous choroiditis. Br J Ophthalmol 98(4):519–522. https://doi.org/10.1136/bjophthalmol-2013-304237
Pichi F, Srivastava SK, Levinson A, Baynes KM, Traut C, Lowder CY (2016) A focal chorioretinal bartonella lesion analyzed by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina. 47(6):585–588. https://doi.org/10.3928/23258160-20160601-12
Baumal CR, de Carlo TE, Waheed NK, Salz DA, Witkin AJ, Duker JS (2015) Sequential optical coherence tomographic angiography for diagnosis and treatment of choroidal neovascularization in multifocal choroiditis. JAMA Ophthalmol 133(9):1087–1090. https://doi.org/10.1001/jamaophthalmol.2015.1946
Nakao S, Kaizu Y, Oshima Y, Sakamoto T, Ishibashi T, Sonoda K-H (2016) Optical coherence tomography angiography for detecting choroidal neovascularization secondary to punctate inner choroidopathy. Ophthalmic Surg Lasers Imaging Retina 47(12):1157–1161. https://doi.org/10.3928/23258160-20161130-13
Aggarwal K, Agarwal A, Sharma A, Sharma K, Gupta V, OCTA Study Group (2018) Detection of type 1 choroidal neovascular membranes using optical coherence tomography angiography in tubercular posterior uveitis. Retina (Philadelphia, PA). https://doi.org/10.1097/IAE.0000000000002176
Talks SJ, Aftab AM, Ashfaq I, Soomro T (2017) The role of new imaging methods in managing age-related macular degeneration. Asia Pac J Ophthalmol (Phila) 6(6):498–507. https://doi.org/10.22608/APO.2017305
Milani P, Massacesi A, Moschini S et al (2016) Multimodal imaging and diagnosis of myopic choroidal neovascularization in Caucasians. Clin Ophthalmol 10:1749–1757. https://doi.org/10.2147/OPTH.S108509
Toju R, Iida T, Sekiryu T, Saito M, Maruko I, Kano M (2012) Near-infrared autofluorescence in patients with idiopathic submacular choroidal neovascularization. Am J Ophthalmol 153(2):314–319. https://doi.org/10.1016/j.ajo.2011.06.026
Kellner U, Kellner S, Weinitz S (2010) Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration. Retina (Philadelphia, Pa) 30(1):6–15
Theelen T, Berendschot TTJM, Hoyng CB, Boon CJF, Klevering BJ (2009) Near-infrared reflectance imaging of neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 247(12):1625–1633. https://doi.org/10.1007/s00417-009-1148-9
Chang TS, Bressler NM, Fine JT et al (2007) Improved vision-related function after ranibizumab treatment of neovascular age-related macular degeneration: results of a randomized clinical trial. Arch Ophthalmol 125(11):1460–1469. https://doi.org/10.1001/archopht.125.11.1460
Schadlu R, Blinder KJ, Shah GK et al (2008) Intravitreal bevacizumab for choroidal neovascularization in ocular histoplasmosis. Am J Ophthalmol 145(5):875–878. https://doi.org/10.1016/j.ajo.2007.12.030
Ben Yahia S, Herbort CP, Jenzeri S et al (2008) Intravitreal bevacizumab (Avastin) as primary and rescue treatment for choroidal neovascularization secondary to ocular toxoplasmosis. Int Ophthalmol 28(4):311–316. https://doi.org/10.1007/s10792-008-9218-2
Shah NJ, Shah UN (2011) Intravitreal ranibizumab for the treatment of choroidal neovascularization secondary to ocular toxoplasmosis. Indian J Ophthalmol 59(4):318–319. https://doi.org/10.4103/0301-4738.82005
Lyall D a M, Hutchison BM, Gaskell A, Varikkara M (2010) Intravitreal ranibizumab in the treatment of choroidal neovascularisation secondary to ocular toxocariasis in a 13-year-old boy. Eye (Lond) 24(11):1730–1731. https://doi.org/10.1038/eye.2010.131
Yoon DY, Woo SJ (2018) Intravitreal administration of ranibizumab and bevacizumab for choroidal neovascularization secondary to ocular toxocariasis: a case report. Ocul Immunol Inflamm 26(4):639–641. https://doi.org/10.1080/09273948.2016.1239744
Julian K, Langner-Wegscheider B-J, Haas A, De Smet MD (2013) Intravitreal methotrexate in the management of presumed tuberculous serpiginous-like choroiditis. Retina (Philadelphia, Pa) 33(9):1943–1948. https://doi.org/10.1097/IAE.0b013e318285cdbe
Lee Kim E, Rodger DC, Rao NA (2017) Choroidal neovascularization secondary to tuberculosis: presentation and management. Am J Ophthalmol Case Rep 5:124–129. https://doi.org/10.1016/j.ajoc.2016.12.025
Wu L, Evans T, Saravia M, Schlaen A, Couto C (2009) Intravitreal bevacizumab for choroidal neovascularization secondary to Vogt-Koyanagi-Harada syndrome. Jpn J Ophthalmol 53(1):57–60. https://doi.org/10.1007/s10384-008-0600-4
Fine HF, Zhitomirsky I, Freund KB et al (2009) Bevacizumab (Avastin) and ranibizumab (Lucentis) for choroidal neovascularization in multifocal choroiditis. Retina (Philadelphia, Pa) 29(1):8–12. https://doi.org/10.1097/IAE.0b013e318187aff9
Chang LK, Spaide RF, Brue C, Freund KB, Klancnik JM, Slakter JS (2008) Bevacizumab treatment for subfoveal choroidal neovascularization from causes other than age-related macular degeneration. Arch Ophthalmol 126(7):941–945. https://doi.org/10.1001/archopht.126.7.941
Christmas NJ, Oh KT, Oh DM, Folk JC (2002) Long-term follow-up of patients with serpinginous choroiditis. Retina (Philadelphia, Pa) 22(5):550–556
Mavrakanas N, Mendrinos E, Tabatabay C, Pournaras CJ (2010) Intravitreal ranibizumab for choroidal neovascularization secondary to acute multifocal posterior placoid pigment epitheliopathy. Acta Ophthalmol 88(2):e54–e55. https://doi.org/10.1111/j.1755-3768.2009.01541.x
Edelman JL, Lutz D, Castro MR (2005) Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res 80(2):249–258. https://doi.org/10.1016/j.exer.2004.09.013
Oliver A, Ciulla TA (2006) Corticosteroids as antiangiogenic agents. Ophthalmol Clin N Am 19(3):345–351, v. https://doi.org/10.1016/j.ohc.2006.05.002
Martidis A, Miller DG, Ciulla TA, Danis RP, Moorthy RS (1999) Corticosteroids as an antiangiogenic agent for histoplasmosis-related subfoveal choroidal neovascularization. J Ocul Pharmacol Ther 15(5):425–428. https://doi.org/10.1089/jop.1999.15.425
Rechtman E, Allen VD, Danis RP, Pratt LM, Harris A, Speicher MA (2003) Intravitreal triamcinolone for choroidal neovascularization in ocular histoplasmosis syndrome. Am J Ophthalmol 136(4):739–741
Chan W-M, Lai TYY, Lau TTY, Lee VYW, Liu DTL, Lam DSC (2008) Combined photodynamic therapy and intravitreal triamcinolone for choroidal neovascularization secondary to punctate inner choroidopathy or of idiopathic origin: one-year results of a prospective series. Retina (Philadelphia, Pa) 28(1):71–80. https://doi.org/10.1097/IAE.0b013e31815e9339
Fong KCS, Thomas D, Amin K, Inzerillo D, Horgan SE (2008) Photodynamic therapy combined with systemic corticosteroids for choroidal neovascularisation secondary to punctate inner choroidopathy. Eye (Lond). 22(4):528–533. https://doi.org/10.1038/sj.eye.6702688
Giovannini A, Neri P, Mercanti L, Bruè C (2007) Photodynamic treatment versus photodynamic treatment associated with systemic steroids for idiopathic choroidal neovascularisation. Br J Ophthalmol 91(5):620–623. https://doi.org/10.1136/bjo.2006.103135
Pai SA, Hebri SP, Lootah AM (2012) Management of recurrent inflammatory choroidal neovascular membrane secondary to Vogt-Koyanagi-Harada syndrome, using combined intravitreal injection of bevacizumab and triamcinolone acetate. Indian J Ophthalmol 60(6):551–552. https://doi.org/10.4103/0301-4738.103795
Jasielska M, Semkova I, Shi X et al (2010) Differential role of tumor necrosis factor (TNF)-alpha receptors in the development of choroidal neovascularization. Invest Ophthalmol Vis Sci 51(8):3874–3883. https://doi.org/10.1167/iovs.09-5003
Shi X, Semkova I, Müther PS, Dell S, Kociok N, Joussen AM (2006) Inhibition of TNF-alpha reduces laser-induced choroidal neovascularization. Exp Eye Res 83(6):1325–1334. https://doi.org/10.1016/j.exer.2006.07.007
Regatieri CV, Dreyfuss JL, Melo GB, Lavinsky D, Farah ME, Nader HB (2009) Dual role of intravitreous infliximab in experimental choroidal neovascularization: effect on the expression of sulfated glycosaminoglycans. Invest Ophthalmol Vis Sci 50(11):5487–5494. https://doi.org/10.1167/iovs.08-3171
Kilmartin DJ, Forrester JV, Dick AD (1998) Cyclosporine-induced resolution of choroidal neovascularization associated with sympathetic ophthalmia. Arch Ophthalmol 116(2):249–250
Dees C, Arnold JJ, Forrester JV, Dick AD (1998) Immunosuppressive treatment of choroidal neovascularization associated with endogenous posterior uveitis. Arch Ophthalmol 116(11):1456–1461
Neri P, Manoni M, Fortuna C, Lettieri M, Mariotti C, Giovannini A (2010) Association of systemic steroids and mycophenolate mofetil as rescue therapy for uveitic choroidal neovascularization unresponsive to the traditional immunosuppressants: interventional case series. Int Ophthalmol 30(5):583–590. https://doi.org/10.1007/s10792-009-9323-x
Ganesh S, Ahmed A, Biswas J (2017) Analysis of the clinical profile and management of inflammatory choriodal neovascular membranes in uveitic eyes: a study from a tertiary referral center. Ocul Immunol Inflamm October:1–11. https://doi.org/10.1080/09273948.2017.1375119
Hogan A, Behan U, Kilmartin DJ (2005) Outcomes after combination photodynamic therapy and immunosuppression for inflammatory subfoveal choroidal neovascularisation. Br J Ophthalmol 89(9):1109–1111. https://doi.org/10.1136/bjo.2004.063024
Kolomeyer AM, Roy MS, Chu DS (2011) The use of intravitreal ranibizumab for choroidal neovascularization associated with Vogt-Koyanagi-Harada syndrome. Case Rep Med 2011:747648. https://doi.org/10.1155/2011/747648
Mateo-Montoya A, Baglivo E, de Smet MD (2013) Intravitreal methotrexate for the treatment of choroidal neovascularization in multifocal choroiditis. Eye (Lond). 27(2):277–278. https://doi.org/10.1038/eye.2012.262
JHSPH Center for Clinical Trials. macular edema ranibizumab v. Intravitreal Anti-inflammatory Therapy Trial (MERIT) https://clinicaltrials.gov/ct2/show/NCT02623426 . Accessed 21 July 2018.
Lim JI, Flaxel CJ, LaBree L (2006) Photodynamic therapy for choroidal neovascularisation secondary to inflammatory chorioretinal disease. Ann Acad Med Singap 35(3):198–202
Rogers AH, Duker JS, Nichols N, Baker BJ (2003) Photodynamic therapy of idiopathic and inflammatory choroidal neovascularization in young adults. Ophthalmology 110(7):1315–1320. https://doi.org/10.1016/S0161-6420(03)00466-4
Postelmans L, Pasteels B, Coquelet P et al (2005) Photodynamic therapy for subfoveal classic choroidal neovascularization related to punctate inner choroidopathy (PIC) or presumed ocular histoplasmosis-like syndrome (POHS-like). Ocul Immunol Inflamm 13(5):361–366
Wachtlin J, Heimann H, Behme T, Foerster MH (2003) Long-term results after photodynamic therapy with verteporfin for choroidal neovascularizations secondary to inflammatory chorioretinal diseases. Graefes Arch Clin Exp Ophthalmol 241(11):899–906. https://doi.org/10.1007/s00417-003-0734-5
Mauget-Faÿsse M, Mimoun G, Ruiz-Moreno JM et al (2006) Verteporfin photodynamic therapy for choroidal neovascularization associated with toxoplasmic retinochoroiditis. Retina (Philadelphia, Pa) 26(4):396–403. https://doi.org/10.1097/01.iae.0000238552.76412.ae
Neri P, Mercanti L, Mariotti C, Salvolini S, Giovannini A (2010) Long-term control of choroidal neovascularization in quiescent congenital toxoplasma retinochoroiditis with photodynamic therapy: 4-year results. Int Ophthalmol 30(1):51–56. https://doi.org/10.1007/s10792-008-9291-6
Rishi P, Venkataraman A, Rishi E (2011) Combination photodynamic therapy and bevacizumab for choroidal neovascularization associated with toxoplasmosis. Indian J Ophthalmol 59(1):62–64
Nóbrega MJ, Rosa EL (2007) Toxoplasmosis retinochoroiditis after photodynamic therapy and intravitreal triamcinolone for a supposed choroidal neovascularization: a case report. Arq Bras Oftalmol 70(1):157–160
Nowilaty SR, Bouhaimed M (2006) Photodynamic Therapy Study Group. Photodynamic therapy for subfoveal choroidal neovascularisation in Vogt-Koyanagi-Harada disease. Br J Ophthalmol 90(8):982–986. https://doi.org/10.1136/bjo.2006.091538
Farah ME, Costa RA, Muccioli C, Guia TA, Belfort R (2002) Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization in Vogt-Koyanagi-Harada syndrome. Am J Ophthalmol 134(1):137–139
Parodi MB, Iacono P, Spasse S, Ravalico G (2006) Photodynamic therapy for juxtafoveal choroidal neovascularization associated with multifocal choroiditis. Am J Ophthalmol 141(1):123–128. https://doi.org/10.1016/j.ajo.2005.07.045
Parodi MB, Iacono P, Kontadakis DS, Zucchiatti I, Cascavilla ML, Bandello F (2010) Bevacizumab vs photodynamic therapy for choroidal neovascularization in multifocal choroiditis. Arch Ophthalmol 128(9):1100–1103. https://doi.org/10.1001/archophthalmol.2010.205
Benson MT, Callear A, Tsaloumas M, Chhina J, Beatty S (1998) Surgical excision of subfoveal neovascular membranes. Eye (Lond). 12(Pt 5):768–774. https://doi.org/10.1038/eye.1998.200
Adán A, Mateo C, Wolley-Dod C (2003) Surgery for subfoveal choroidal neovascularization in toxoplasmic retinochoroiditis. Am J Ophthalmol 135(3):386–387
Recchia FM, Shah GK, Eagle RC, Sivalingam A, Fischer DH (2002) Visual and anatomical outcome following submacular surgery for choroidal neovascularization secondary to Candida endophthalmitis. Retina (Philadelphia, Pa) 22(3):323–329
Jampol LM, Sung J, Walker JD et al (1996) Choroidal neovascularization secondary to Candida albicans chorioretinitis. Am J Ophthalmol 121(6):643–649
Kazokoglu H, Onal S, Tugal-Tutkun I et al (2008) Demographic and clinical features of uveitis in tertiary centers in Turkey. Ophthalmic Epidemiol 15(5):285–293. https://doi.org/10.1080/09286580802262821
Walia HS, Shah GK, Blinder KJ (2016) Treatment of CNV secondary to presumed ocular histoplasmosis with intravitreal aflibercept 2.0 mg injection. Can J Ophthalmol 51(2):91–96. https://doi.org/10.1016/j.jcjo.2015.11.007
Saperstein DA, Rosenfeld PJ, Bressler NM et al (2002) Photodynamic therapy of subfoveal choroidal neovascularization with verteporfin in the ocular histoplasmosis syndrome: one-year results of an uncontrolled, prospective case series. Ophthalmology 109(8):1499–1505
Fountain JA, Schlaegel TF (1981) Linear streaks of the equator in the presumed ocular histoplasmosis syndrome. Arch Ophthalmol 99(2):246–248
Kijlstra A, Petersen E (2014) Epidemiology, pathophysiology, and the future of ocular toxoplasmosis. Ocul Immunol Inflamm 22(2):138–147. https://doi.org/10.3109/09273948.2013.823214
Butler NJ, Furtado JM, Winthrop KL, Smith JR (2013) Ocular toxoplasmosis II: clinical features, pathology and management. Clin Exp Ophthalmol 41(1):95–108. https://doi.org/10.1111/j.1442-9071.2012.02838.x
Gupta V, Gupta A, Rao NA (2007) Intraocular tuberculosis--an update. Surv Ophthalmol 52(6):561–587. https://doi.org/10.1016/j.survophthal.2007.08.015
Gupta V, Shoughy SS, Mahajan S et al (2015) Clinics of ocular tuberculosis. Ocul Immunol Inflamm 23(1):14–24. https://doi.org/10.3109/09273948.2014.986582
Bakri SJ, Kaiser PK (2004) Ocular manifestations of West Nile virus. Curr Opin Ophthalmol 15(6):537–540
Khairallah M, Ben Yahia S, Ladjimi A et al (2004) Chorioretinal involvement in patients with West Nile virus infection. Ophthalmology 111(11):2065–2070. https://doi.org/10.1016/j.ophtha.2004.03.032
Yahia SB, Khairallah M (2009) Ocular manifestations of West Nile virus infection. Int J Med Sci 6(3):114–115
Kedhar SR, Thorne JE, Wittenberg S, Dunn JP, Jabs DA (2007) Multifocal choroiditis with panuveitis and punctate inner choroidopathy: comparison of clinical characteristics at presentation. Retina (Philadelphia, Pa) 27(9):1174–1179. https://doi.org/10.1097/IAE.0b013e318068de72
Thorne JE, Wittenberg S, Jabs DA et al (2006) Multifocal choroiditis with panuveitis incidence of ocular complications and of loss of visual acuity. Ophthalmology 113(12):2310–2316. https://doi.org/10.1016/j.ophtha.2006.05.067
Nazari Khanamiri H, Rao NA (2013) Serpiginous choroiditis and infectious multifocal serpiginoid choroiditis. Surv Ophthalmol 58(3):203–232. https://doi.org/10.1016/j.survophthal.2012.08.008
Parikh R, Sakurada Y, Yannuzzi LA (June 2018) Multimodal imaging to monitor recurrent serpiginous choroiditis. Ophthalmology. https://doi.org/10.1016/j.ophtha.2018.06.009
Ahn SJ, Park SH, Lee BR (2017) Multimodal imaging including optical coherence tomography angiography in serpiginous choroiditis. Ocul Immunol Inflamm 25(2):287–291. https://doi.org/10.1080/09273948.2017.1288824
Rao NA, Gupta A, Dustin L et al (2010) Frequency of distinguishing clinical features in Vogt-Koyanagi-Harada disease. Ophthalmology 117(3):591–599, 599.e1. https://doi.org/10.1016/j.ophtha.2009.08.030
Yang P, Ren Y, Li B, Fang W, Meng Q, Kijlstra A (2007) Clinical characteristics of Vogt-Koyanagi-Harada syndrome in Chinese patients. Ophthalmology 114(3):606–614. https://doi.org/10.1016/j.ophtha.2006.07.040
Korol AR, Zborovska O, Kustryn T, Dorokhova O, Pasyechnikova N (2017) Intravitreal aflibercept for choroidal neovascularization associated with chorioretinitis: a pilot study. Clin Ophthalmol 11:1315–1320. https://doi.org/10.2147/OPTH.S132923
Mansour AM, Mackensen F, Mahendradas P, Khairallah M, Lai TY, Bashshur Z (2012) Five-year visual results of intravitreal bevacizumab in refractory inflammatory ocular neovascularization. Clin Ophthalmol 6:1233–1237. https://doi.org/10.2147/OPTH.S34294
Iannetti L, Paroli MP, Fabiani C, Nardella C, Campanella M, Pivetti-Pezzi P (2013) Effects of intravitreal bevacizumab on inflammatory choroidal neovascular membrane. Eur J Ophthalmol 23(1):114–118. https://doi.org/10.5301/ejo.5000192
Julián K, Terrada C, Fardeau C et al (2011) Intravitreal bevacizumab as first local treatment for uveitis-related choroidal neovascularization: long-term results. Acta Ophthalmol 89(2):179–184. https://doi.org/10.1111/j.1755-3768.2010.02046.x
Cornish KS, Williams GJ, Gavin MP, Imrie FR (2011) Visual and optical coherence tomography outcomes of intravitreal bevacizumab and ranibizumab in inflammatory choroidal neovascularization secondary to punctate inner choroidopathy. Eur J Ophthalmol 21(4):440–445. https://doi.org/10.5301/EJO.2010.6117
Kramer M, Axer-Siegel R, Jaouni T et al (2010) Bevacizumab for choroidal neovascularization related to inflammatory diseases. Retina (Philadelphia, Pa) 30(6):938–944. https://doi.org/10.1097/IAE.0b013e3181c96a00
Lott MN, Schiffman JC, Davis JL (2009) Bevacizumab in inflammatory eye disease. Am J Ophthalmol 148(5):711–717.e2. https://doi.org/10.1016/j.ajo.2009.06.010
Doctor PP, Bhat P, Sayed R, Foster CS (2009) Intravitreal bevacizumab for uveitic choroidal neovascularization. Ocul Immunol Inflamm 17(2):118–126. https://doi.org/10.1080/09273940802650406