An ultra-fast human detection method for color-depth camera
Tài liệu tham khảo
M. Harville, D. Li, Fast, integrated person tracking and activity recognition with plan-view templates from a single stereo camera, in: CVPR, 2004.
Ess, 2009, Robust multiperson tracking from a mobile platform, IEEE Trans. Pattern Anal. Mach. Intell., 31, 1831, 10.1109/TPAMI.2009.109
Chen, 2009, Pose estimation based on human detection and segmentation, Sci. China Ser. F: Inf. Sci., 52, 244, 10.1007/s11432-009-0031-y
M. Enzweiler et al., Multi-cue pedestrian classification with partial occlusion handling, in: CVPR, 2010.
Shuai, 2012, A hierarchical clustering based non-maximum suppression method in pedestrian detection, Lect. Notes Comput. Sci., 7202, 201, 10.1007/978-3-642-31919-8_26
Chuang, 2014, Model-based approach to spatial-temporal sampling of video clips for video object detection by classification, J. Vis. Commun. Image Represent., 25, 1018, 10.1016/j.jvcir.2014.02.014
Wu, 2007, Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors, Int. J. Comput. Vision, 75, 247, 10.1007/s11263-006-0027-7
Xu, 2012, Fast and accurate human detection using a cascade of boosted MS-LBP features, IEEE Signal Process. Lett., 19, 676, 10.1109/LSP.2012.2210870
K. Levi, Y. Weiss, Learning object detection from a small number of examples: the importance of good features, in: CVPR, 2004.
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: CVPR, 2005.
Pang, 2011, Efficient hog human detection, Signal Process., 91, 773, 10.1016/j.sigpro.2010.08.010
Y. Mu, S. Yan, et al., Discriminative local binary patterns for human detection in personal album, in: CVPR, 2008.
Li, 2010, Heat kernel based local binary pattern for face representation, IEEE Signal Process. Lett., 17, 308, 10.1109/LSP.2009.2036653
L. Wang, K.L. Chan, G. Wang, Human detection with occlusion handling by over-segmentation and clustering on foreground regions, in: ACCV, 2012.
Dan, 2012, Robust people counting system based on sensor fusion, IEEE Trans. Consum. Electron., 58, 1013, 10.1109/TCE.2012.6311350
Zhang, 2013, Real-time multiple human perception with color-depth cameras on a mobile robot, IEEE Trans. Cybern., 43, 1429, 10.1109/TCYB.2013.2275291
Buysa, 2014, An adaptable system for RGB-D based human body detection and pose estimation, J. Vis. Commun. Image Represent., 25, 39, 10.1016/j.jvcir.2013.03.011
A. Bevilacqua, L.D. Stefano, P. Azzari, People tracking using a time-of-flight depth sensor, in: IEEE International Conference on Video and Signal Based Surveillance, 2006.
D. Mitzel, B. Leibe, Close-range human detection for head-mounted cameras, in: BMVC, 2012.
Liu, 2015, Detecting and tracking people in real time with RGB-D camera, Pattern Recogn. Lett., 53, 16, 10.1016/j.patrec.2014.09.013
S. Ikemura, H. Fujiyoshi, Real-time human detection using relational depth similarity features, in: ACCV, 2010.
L. Spinello, K.O. Arras, People detection in RGB-D data, in: IROS, 2011.
L. Xia, C.-C. Chen, J.K. Aggarwal, Human detection using depth information by kinect, in: CVPRW, 2011.
W. Choi, C. Pantofaru, S. Savarese, Detecting and tracking people using an RGB-D camera via multiple detector fusion, in: ICCVW, 2011.
J. Liu, Y. Liu, Y. Cui, Y.Q. Chen, Real-time human detection and tracking in complex environments using single RGBD camera, in: IEEE International Conference on Image Processing, 2013, pp. 3088–3092.
Herrera, 2012, Joint depth and color camera calibration with distortion correction, IEEE Trans. Pattern Anal. Mach. Intell., 34, 2058, 10.1109/TPAMI.2012.125
Choi, 2013, A general framework for tracking multiple people from a moving camera, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1577, 10.1109/TPAMI.2012.248
D. Ganotra, J. Joseph, K. Singh, Modified geometry of ring-wedge detector for sampling Fourier transform of fingerprints for classification using neural networks, in: Proc. SPIE, 2003.