Barghamadi, 2014, Energy Environ. Sci., 7, 3902, 10.1039/C4EE02192D
Gao, 2010, Energy Environ. Sci., 3, 174, 10.1039/B916098A
Manthiram, 2015, Adv. Mater., 27, 1980, 10.1002/adma.201405115
Yang, 2013, Chem. Soc. Rev., 42, 3018, 10.1039/c2cs35256g
Liu, 2017, Adv. Mater., 29, 1601759, 10.1002/adma.201601759
Liang, 2016, Adv. Energy Mater., 6, 1501636, 10.1002/aenm.201501636
Yang, 2011, ACS Nano, 5, 9187, 10.1021/nn203436j
Bucur, 2017, Energy Environ. Sci., 10, 905, 10.1039/C7EE00398F
Bai, 2016, Nat. Energy, 1, 16094, 10.1038/nenergy.2016.94
Sun, 2016, Adv. Mater., 28, 9797, 10.1002/adma.201602172
Ghazi, 2017, Adv. Mater., 29, 1606817, 10.1002/adma.201606817
Yu, 2016, Adv. Energy Mater., 6, 1601392, 10.1002/aenm.201601392
Yu, 2017, Acc. Chem. Res., 50, 2653, 10.1021/acs.accounts.7b00460
Li, 2017, Nat. Commun., 8, 850, 10.1038/s41467-017-00974-x
Ding, 2019, Adv. Funct. Mater., 1904547, 10.1002/adfm.201904547
Xu, 2018, Adv. Energy Mater., 8, 1800813, 10.1002/aenm.201800813
Nair, 2016, Energy Storage Mater., 3, 69, 10.1016/j.ensm.2016.01.008
Frischmann, 2015, Chem. Mater., 27, 6765, 10.1021/acs.chemmater.5b02955
Huang, 2018, J. Mater. Chem., 6, 9539, 10.1039/C8TA03061H
Chen, 2017, Nano Lett., 17, 3061, 10.1021/acs.nanolett.7b00417
Liu, 2016, Nano Energy, 22, 278, 10.1016/j.nanoen.2016.02.008
Zhu, 2016, Carbon, 101, 272, 10.1016/j.carbon.2016.02.007
Judez, 2017, J. Phys. Chem. Lett., 8, 1956, 10.1021/acs.jpclett.7b00593
Lu, 2017, Adv. Mater., 29, 1604460, 10.1002/adma.201604460
Zhu, 2016, ACS Sustain. Chem. Eng., 4, 4498, 10.1021/acssuschemeng.6b01218
Tang, 2017, Adv. Mater., 29, 1701828, 10.1002/adma.201701828
Zhu, 2018, Adv. Energy Mater., 8, 1702561, 10.1002/aenm.201702561
Fu, 2018, ACS Appl. Mater. Interfaces, 10, 4726, 10.1021/acsami.7b17156
Xin, 2017, ACS Energy Lett., 2, 1385, 10.1021/acsenergylett.7b00175
Mei, 2017, Adv. Funct. Mater., 27, 1701176, 10.1002/adfm.201701176
Cheng, 2016, Adv. Mater., 28, 2888, 10.1002/adma.201506124
Li, 2012, Adv. Energy Mater., 2, 431, 10.1002/aenm.201100548
Sun, 2018, Adv. Energy Mater., 8, 1800595, 10.1002/aenm.201800595
Song, 2015, Angew. Chem. Int. Ed., 54, 4325, 10.1002/anie.201411109
Jabbour, 2013, Cellulose, 20, 1523, 10.1007/s10570-013-9973-8
Huang, 2011, J. Solid State Electrochem., 15, 649, 10.1007/s10008-010-1264-9
Chung, 2015, Adv. Energy Mater., 5, 1500738, 10.1002/aenm.201500738
Kritzer, 2006, J. Power Sources, 161, 1335, 10.1016/j.jpowsour.2006.04.142
Zhang, 2014, Sci. Rep., 4, 3935, 10.1038/srep03935
Bai, 2016, Nat. Energy, 1, 10.1038/nenergy.2016.94
Zhang, 2017, Adv. Energy Mater., 7
Xie, 2017, Adv. Mater., 29
Zhang, 2016, Nano Lett., 16, 7276, 10.1021/acs.nanolett.6b03849
Li, 2016, Nat. Commun., 7, 13065, 10.1038/ncomms13065
Cui, 2016, Adv. Mater., 28, 6926, 10.1002/adma.201601382
Pu, 2017, Nano Energy, 37, 7, 10.1016/j.nanoen.2017.05.009
Liu, 2016, Nano Energy, 22, 278, 10.1016/j.nanoen.2016.02.008
Gao, 2017, J. Mater. Chem., 5, 17889, 10.1039/C7TA05145J
Liu, 2016, Nano Energy, 28, 97, 10.1016/j.nanoen.2016.08.033
Zhou, 2019, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery, Energy Storage Mater., 22, 256, 10.1016/j.ensm.2019.01.024
Han, 2018, J. Mater. Chem., 6, 18627, 10.1039/C8TA07685E
Huang, 2018, J. Mater. Chem., 6, 9539, 10.1039/C8TA03061H
Yang, 2019, J. Mater. Chem., 7, 13679, 10.1039/C9TA03123E
Yuan, 2016, Nano Lett., 16, 519, 10.1021/acs.nanolett.5b04166
Hagen, 2015, Adv. Energy Mater., 5, 1401986, 10.1002/aenm.201401986
Li, 2018, Energy Environ. Sci., 11, 2372, 10.1039/C8EE01377B
Pang, 2018, Nat. Energy, 3, 783, 10.1038/s41560-018-0214-0
Chung, 2018, Adv. Mater., 30, 1705951, 10.1002/adma.201705951
Zheng, 2013, J. Electrochem. Soc., 160, A2288, 10.1149/2.106311jes
Chung, 2018, ACS Energy Lett., 3, 568, 10.1021/acsenergylett.7b01321
Pan, 2018, Adv. Funct. Mater., 28, 1707234, 10.1002/adfm.201707234
Pang, 2016, Nat. Energy, 1, 16132, 10.1038/nenergy.2016.132