An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gewirth, A. A. & Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg. Chem. 49, 3557–3566 (2010).
Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).
Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).
Wu, J. & Yang, H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res. 4, 72–82 (2011).
Lim, B., Jiang, M., Yu, T., Camargo, P. H. C. & Xia, Y. X. Nucleation and growth mechanisms for Pd–Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 3, 69–80 (2010).
Bezerra, C. W. B. et al. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937–4951 (2008).
Jaouen, F. et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114–130 (2011).
Lefevre, M., Proietti, E., Jaouen, F. & Dodelet, J-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).
Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011).
Pylypenko, S., Mukherjee, S., Olson, T. S. & Atanassov, P. Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochim. Acta 53, 7875–7883 (2008).
Yang, J., Liu, D-J., Kariuki, N. N. & Chen, L. X. Aligned carbon nanotubes with built-in FeN4 active sites for electrocatalytic reduction of oxygen. Chem. Commun. 329–331 (2008).
Xiong, W. et al. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132, 15839–15841 (2010).
Kundu, S. et al. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 113, 14302–14310 (2009).
Geng, D. et al. Non-noble metal oxygen reduction electrocatalysts based on carbon nanotubes with controlled nitrogen contents. J. Power Sources 196, 1795–1801 (2011).
Wiggins-Camacho, J. D. & Stevenson, K. J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. J. Phys. Chem. C 115, 20002–20010 (2011).
Nagaiah, T. C., Kundu, S., Bron, M., Muhler, M. & Schuhmann, W. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochem. Commun. 12, 338–341 (2010).
Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).
Ning, G., Liu, Y., Wei, F., Wen, Q. & Luo, G. Porous and lamella-like Fe/MgO catalysts prepared under hydrothermal conditions for high-yield synthesis of double-walled carbon nanotubes. J. Phys. Chem. C 111, 1969–1975 (2007).
Kosynkin Dmitry, V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).
Wang, H., Cote, R., Faubert, G., Guay, D. & Dodelet, J. P. Effect of the pre-treatment of carbon black supports on the activity of Fe-based electrocatalysts for the reduction of oxygen. J. Phys. Chem. B 103, 2042–2049 (1999).
Li, X. et al. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009).
Jaouen, F., Serventi, A. M., Lefevre, M., Dodelet, J-P. & Bertrand, P. Non-noble electrocatalysts for O2 reduction: how does heat treatment affect their activity and structure? Part II. Structural changes observed by electron microscopy, Raman, and mass spectroscopy. J. Phys. Chem. C 111, 5971–5976 (2007).
Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).
Garsany, Y., Baturina, O. A., Swider-Lyons, K. E. & Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82, 6321–6328 (2010).
Gong, K. et al. Platinum-monolayer electrocatalysts: palladium interlayer on IrCo alloy core improves activity in oxygen-reduction reaction. J. Electroanal. Chem. 649, 232–237 (2010).
Lima, F. H. B. et al. Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C 111, 404–410 (2007).
Meng, H., Jaouen, F., Proietti, E., Lefevre, M. & Dodelet, J-P. pH-effect on oxygen reduction activity of Fe-based electro-catalysts. Electrochem. Commun. 11, 1986–1989 (2009).
Anderson, A. B. & Sidik, R. A. Oxygen electroreduction on FeII and FeIII coordinated to N4 chelates. Reversible potentials for the intermediate steps from quantum theory. J. Phys. Chem. B 108, 5031–5035 (2004).
Medard, C., Lefevre, M., Dodelet, J. P., Jaouen, F. & Lindbergh, G. Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports. Electrochim. Acta 51, 3202–3213 (2006).
Yu, D., Zhang, Q. & Dai, L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132, 15127–15129 (2010).
Wu, G. et al. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst. Chem. Commun. 46, 7489–7491 (2010).
Li, X., Liu, C., Xing, W. & Lu, T. Development of durable carbon black/titanium dioxide supported macrocycle catalysts for oxygen reduction reaction. J. Power Sources 193, 470–476 (2009).
Esumi, K., Ishigami, M., Nakajima, A., Sawada, K. & Honda, H. Chemical treatment of carbon nanotubes. Carbon 34, 279–281 (1996).
Gupta, S., Fierro, C. & Yeager, E. The effects of cyanide on the electrochemical properties of transition-metal macrocycles for oxygen reduction in alkaline-solutions. J. Electroanal. Chem. 306, 239–250 (1991).
Thorum, M. S., Hankett, J. M. & Gewirth, A. A. Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: evidence for metal-centered activity. J. Phys. Chem. Lett. 2, 295–298 (2011).
Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).
Hunt, J. A. & Williams, D. B. Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73 (1991).
Scherson, D. A. et al. In situ and ex situ Moessbauer spectroscopy studies of iron phthalocyanine adsorbed on high surface area carbon. J. Phys. Chem. 87, 932–943 (1983).
Lefevre, M., Dodelet, J. P. & Bertrand, P. Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem. B 106, 8705–8713 (2002).
Thomas, L. A. et al. Carboxylic acid-stabilized iron oxide nanoparticles for use in magnetic hyperthermia. J. Mater. Chem. 19, 6529–6535 (2009).