An overview on the effect of ultrasonication duration on different properties of nanofluids

Asif Afzal1, Ibrahim Nawfal1, I.M. Mahbubul2, Sunil Siddalingappa Kumbar1
1Department of Mechanical Engineering, P. A. College of Engineering (Affiliated to Visvesvaraya Technological University Belagavi), Mangaluru, India
2Center of Research Excellence in Renewable Energy (CoRERE), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

Sohel MR, Saidur R, Khaleduzzaman SS, Ibrahim TA. Cooling performance investigation of electronics cooling system using Al2O3–H2O nanofluid. Int Commun Heat Mass Transf. 2015;65:89–93.

Sohel MR, Khaleduzzaman SS, Saidur R, Hepbasli A, Sabri MFM, Mahbubul IM. An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int J Heat Mass Transf. 2014;74:164–72.

Sohel MR, Saidur R, Hassan NH, Elias MM, Khaleduzzaman SS, Mahbubul IM. Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink. Int Commun Heat Mass Transf. 2013;46:85–91.

Sundar LS, Ramana EV, Singh MK, Sousa AC. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass Transf. 2014;56:86–95.

Thakur R. Experimental & CFD investigation of cooling performance of mini-channel heat sink using nanofluid (Al2O3–H2O). Patiala: Thapar University; 2015.

Zakaria I, et al. Thermal analysis of heat transfer enhancement and fluid flow for low concentration of Al2O3 water–ethylene glycol mixture nanofluid in a single PEMFC cooling plate, vol. 79. Amsterdam: Elsevier B.V.; 2015.

Selvakumar P, Suresh S. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink. J Nanosci Nanotechnol. 2014;14(3):2325–33.

Nazari M, Karami M, Ashouri M. Comparing the thermal performance of water, ethylene glycol, alumina and CNT nanofluids in CPU cooling: experimental study. Exp Therm Fluid Sci. 2014;57(September):371–7.

Bobbo S, Fedele L, Fabrizio M, Barison S, Battiston S, Pagura C. Influence of nanoparticles dispersion in POE oils on lubricity and R134a solubility. Int J Refrig. 2010;33(6):1180–6.

Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys. 2014;47(1):13001.

Ingole S, Charanpahari A, Kakade A, Umare SS, Bhatt DV, Menghani J. Tribological behavior of nano TiO2 as an additive in base oil. Wear. 2013;301(1–2):776–85.

Afzal A, Samee ADM, Razak RKA. Experimental thermal investigation of CuO–W nanofluid in circular minichannel. Model Meas Control B. 2017;86(2):335–44.

Ahmad SHA, Saidur R, Mahbubul IM, Al-Sulaiman FA. Optical properties of various nanofluids used in solar collector: a review. Renew Sustain Energy Rev. 2017;73:1014–30.

Gorji TB, Ranjbar AA. A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew Sustain Energy Rev. 2017;72:10–32.

Sundar LS, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017;68:185–98.

Kumar M, Afzal A, Ramis MK. Investigation of physicochemical and tribological properties of Tio2 nano-lubricant oil of different concentrations. Tribol Finnish J Tribol. 2017;35(3):6–15.

Wu D, Zhu H, Wang L, Liu L. Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr Nanosci. 2009;5:103–12.

Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.

Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W. Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renew Energy. 2018;118:527–35.

Nabeel Rashin M, Hemalatha J. Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics. 2014;54(3):834–40.

Nabeel Rashin M, Hemalatha J. Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics. 2012;52(8):1024–9.

Nabeel Rashin M, Hemalatha J. A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J Mol Liq. 2014;197:257–62.

Kamatchi R, Venkatachalapathy S. Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review. Int J Therm Sci. 2015;87:228–40.

Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54(17–18):4051–68.

Mehrali M, et al. Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J Mater Sci. 2014;49(20):7156–71.

Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196(2):89–101.

Abareshi M, Goharshadi EK, Mojtaba Zebarjad S, Khandan Fadafan H, Youssefi A. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater. 2010;322(24):3895–901.

Perez-Maqueda JP-RLA, Franco F. Comparative study of the sonication effect on the thermal behaviour of 1:1 and 2:1 aluminium phyllosilicate clays. J Eur Ceram Soc. 2005;25:1463–70.

Perez-Maqueda JLP-RLA, Blanes JM, Pascual Jose M. The influence of sonication on the thermal behavior of muscovite and biotite. J Eur Ceram Soc. 2004;24:2793–801.

Lam C, Lau K, Cheung H, Ling H. Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites. Mater Lett. 2005;59:1369–72.

Özcan-tas NG, Padron G, Voelkel A, Square MS. Chemical engineering research and design effect of particle type on the mechanisms of break up of nanoscale particle clusters. Chem Eng Res Des. 2008;7:468–73.

Pandey DK, Yadawa PK, Yadav RR. Ultrasonic properties of hexagonal ZnS at nanoscale. Mater Lett. 2007;61(30):5194–8.

Poli AL, Batista T, Schmitt CC, Gessner F, Neumann MG. Effect of sonication on the particle size of montmorillonite clays. J Colloid Interface Sci. 2008;325:386–90.

Rossell MD, et al. Impact of sonication pretreatment on carbon nanotubes: a transmission electron microscopy study. Carbon. 2013;61:404–11.

Phuoc TX, Massoudi M, Chen RH. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci. 2011;50(1):12–8.

Han ZH, Yang B, Kim SH, Zachariah MR. Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology. 2007;18:4–7.

Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT—Fe3O4/water hybrid nano fluids☆. Int Commun Heat Mass Transf. 2014;52:73–83.

Mahbubul IM, et al. Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nano fluid. Ind Eng Chem Res. 2014;53:6677–84.

Mahbubul IM, Saidur R, Amalina MA, Elcioglu EB, Okutucu-ozyurt T. Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrason Sonochem. 2015;26:361–9.

Leena M, Srinivasan S. Synthesis and ultrasonic investigations of titanium oxide nanofluids. J Mol Liq. 2015;206:103–9.

Lei B, Majumder K, Shen S, Wu J. Effect of sonication on thermolysin hydrolysis of ovotransferrin. Food Chem. 2011;124(3):808–15.

Ilyas SU, Pendyala R, Marneni N. Preparation, sedimentation, and agglomeration of nanofluids. Chem Eng Technol. 2014;37(12):2011–21.

Haitao ZHU, Changjiang LI, Daxiong WU, Canying Z, Yansheng YIN. Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Technol Sci. 2010;53(2):360–8.

Show K, Mao T, Lee D. Optimisation of sludge disruption by sonication. Water Res. 2007;41:4741–7.

Siddiqui SW, Unwin PJ, Xu Z, Kresta SM. The effect of stabilizer addition and sonication on nanoparticle agglomeration in a confined impinging jet reactor. Colloids Surf A Physicochem Eng Asp. 2009;350:38–50.

Emami M, Vafaie-sefti M, Morad A, Amrollahi A, Tabasi M, Sid H. The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nano fluids. Int Commun Heat Mass Transf. 2010;37(3):319–23.

Hewitt CA, Craps M, Czerw R, Carroll DL. The effects of high energy probe sonication on the thermoelectric power of large diameter multiwalled carbon nanotubes synthesized by chemical vapor deposition. Synth Met. 2013;184:68–72.

Kabir E, Saha MC, Jeelani S. Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite. Mater Sci Eng A. 2007;459:111–6.

Lee J, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51:2651–6.

Adio SA, Sharifpur M, Meyer JP. Influence of ultrasonication energy on the dispersion consistency of Al2O3—glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density. J Exp Nanosci. 2015;11(8):630–49.

Nine MJ, Rehman H, Chung H-S, Bae K, Jeong H-M. Effect of ultrasonic action on Al2O3/water dispersion and thermal characterization with convective heat transfer. Nanosci Nanotechnol Lett. 2012;4(8):827–34.

Sakthipandi K, Rajendran V, Jayakumar T, Raj B, Kulandivelu P. Synthesis and on-line ultrasonic characterisation of bulk and nanocrystalline La0.68Sr0.32MnO3 perovskite manganite. J Alloys Compd. 2011;509(8):3457–67.

Sonawane SS, Khedkar RS, Wasewar KL. Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J Exp Nanosci. 2015;10(4):310–22.

Chakraborty S, Saha SK, Pandey JC, Das S. Experimental characterization of concentration of nanofluid by ultrasonic technique. Powder Technol. 2011;210(3):304–7.

Mondragon R, Julia JE, Barba A, Jarque JC. Characterization of silica-water nanofluids dispersed with an ultrasound probe: a study of their physical properties and stability. Powder Technol. 2012;224:138–46.

Paul G, Philip J, Raj B, Das PK, Manna I. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. Int J Heat Mass Transf. 2011;54(15–16):3783–8.

Buonomo B, Manca O, Marinelli L, Nardini S. Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl Therm Eng. 2015;91:181–90.

Ghaleb ZA, Mariatti M, Ariff ZM. Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: the effect of sonication time and filler loading. Compos Part A Appl Sci Manuf. 2014;58:77–83.

Zhang G, Wan T. Sludge conditioning by sonication and sonication-chemical methods. Procedia Environ Sci. 2012;16:368–77.

Zhang G, Zhang P, Yang J, Liu H. Bioresource technology energy-efficient sludge sonication: power and sludge characteristics. Bioresour Technol. 2008;99:9029–31.

Khurana D, Choudhary R, Subudhi S. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids. Heat Mass Transf. 2016;53(1):343–61.

Wu D, Zhu H, Wang L, Liu L. Critical issues in nanofluids preparation, characterization conductivity. Curr Nanosci. 2009;5:103–12.

Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys. 2007;9:367.

Kole M, Dey TK. Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp Therm Fluid Sci. 2010;34(6):677–83.

Hojjat M, Etemad SG, Bagheri R, Thibault J. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int Commun Heat Mass Transf. 2011;38(2):144–8.

Duan F, Wong TF, Crivoi A. Dynamic viscosity measurement in non-Newtonian graphite nanofluids. Nanoscale Res Lett. 2012;7(1):360.

Sidik NAC, Mohammed HA, Alawi OA, Samion S. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf. 2014;54:115–25.

Paramashivaiah BM, Rajashekhar CR. Studies on effect of various surfactants on stable dispersion of graphene nano particles in simarouba biodiesel. IOP Conf Ser Mater Sci Eng. 2016;149:12083.

Mahbubul IM, Shahrul IM, Khaleduzzaman SS, Saidur R, Amalina MA, Turgut A. Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina-water nanofluid. Int J Heat Mass Transf. 2015;88:73–81.

Nguyen VS, Rouxel D, Hadji R, Vincent B, Fort Y. Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason Sonochem. 2011;18(1):382–8.

Tajik B, Abbassi A, Saffar-Avval M, Najafabadi MA. Ultrasonic properties of suspensions of TiO2 and Al2O3 nanoparticles in water. Powder Technol. 2012;217:171–6.

Sadeghi MHR, Etemad SGh, Keshavarzi E. Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid Nanofluidics. 2015;18(5–6):1023–30.

Mahbubul IM, Saidur R, Hepbasli A, Amalina MA. Experimental investigation of the relation between yield stress and ultrasonication period of nanofluid. Int J Heat Mass Transf. 2016;93:1169–74.

Chakraborty S, Mukherjee J, Manna M, Ghosh P, Das S, Denys MB. Effect of Ag nanoparticle addition and ultrasonic treatment on a stable TiO2 nanofluid. Ultrason Sonochem. 2012;19(5):1044–50.

Silambarasan M, Manikandan S, Rajan KS. Viscosity and thermal conductivity of dispersions of sub-micron TiO2 particles in water prepared by stirred bead milling and ultrasonication. Int J Heat Mass Transf. 2012;55(25–26):7991–8002.

Rayatzadeh HR, Saffar-avval M, Mansourkiaei M, Abbassi A. Effects of continuous sonication on laminar convective heat transfer inside a tube using water–TiO2 nanofluid. Exp Therm Fluid Sci. 2013;48:8–14.

Ghadimi A, Metselaar IH. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp Therm Fluid Sci. 2013;51:1–9.

Lotfizadehdehkordi B, Ghadimi A, Metselaar HSC. Box–Behnken experimental design for investigation of stability and thermal conductivity of TiO2 nanofluids. J Nanopart Res. 2013;15:1369–78.

Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem. 2017;37:360–7.

Chung SJ, et al. Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol. 2009;194(1–2):75–80.

Kole M, Dey TK. Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids. Thermochim Acta. 2012;535:58–65.

Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheol J. 2005;17(2):35–40.

Asadi A, Asadi M, Siahmargoi M, Asadi T, Gholami Andarati M. The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: an experimental investigation. Int J Heat Mass Transf. 2017;108:191–8.

Yang Y, Grulke EA, Zhang ZG, Wu G, Yang Y, Grulke EA. Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys. 2006;99:114307-1–8.

Yu J, Grossiord N, Koning CE, Loos J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon. 2007;45:618–23.

Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008;19(31):315701.

Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52(21–22):5090–101.

Cheng Q, Gregan E, Byrne H. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties. J Phys Chem C. 2010;114(19):8821–7.

Nasiri A, Shariaty-Niasar M, Rashidi A, Amrollahi A, Khodafarin R. Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp Therm Fluid Sci. 2011;35(4):717–23.

Yu H, Hermann S, Schulz SE, Gessner T, Dong Z, Li WJ. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem Phys. 2012;408:11–6.

Ruan B, Jacobi AM. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett. 2012;7(1):1–14.

Montazeri A, Chitsazzadeh M. Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des. 2014;56:500–8.