An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, J.C., Gerbing, D.W.: Structural equation modeling in practice: a review and recommended two-step approach. Psychol. Bull. 108, 411–423 (1988)
Anderson, T.W., Rubin, H.: Statistical inference in factor analysis. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press (1956)
Arbuckle, J.L.: Amos—16: User’s Guide. SPSS, Chicago (2007)
Arbuckle, J.L., Wothke, W.: AMOS—User’s Guide. Marketing Department, SPSS Incorporporated, Chicago (1999)
Arminger, G., Muthén, B.O.: A bayesian approach to nonlinear latent variable models using the gibbs sampler and the metropolis-hastings algorithm. Psychometrika 63, 271–300 (1998)
Arminger, G., Schoenberg, R.J.: Pseudo maximum likelihood estimation and a test for misspecification in mean and covariance structure models. Psychometrika 54, 409–425 (1989)
Bagozzi, R.P.: Causal Models in Marketing. Wiley, New York (1980)
Bagozzi, R.P.: Issues in the application of covariance structure analysis: a further comment. J. Consum. Res. 9, 449–450 (1983a)
Bagozzi, R.P.: A holistic methodology for modeling consumer response to innovation. Oper. Res. 31, 128–176 (1983b)
Bagozzi, R.P., Yi, Y.: On the evaluation of structural equation models. J. Acad. Mark. Sci. 16, 74–94 (1988)
Barrett, P.: Structural equation modeling: adjudging model fit. Personal. Individ. Differ. 42, 815–824 (2007)
Bartholomew, D.J.: Latent Variable Models and Factor Analysis. Oxford University Press, New York (1987)
Basmann, R.: A generalized classical method of linear estimation of coefficients in a structural equation. Econometrica 25, 77–83 (1957)
Baumgartner, H., Homburg, C.: Applications of structural equation modeling in marketing and consumer research: a review. Int. J. Res. Mark. 13, 139–161 (1996)
Becker, B.J.: Using results from replicated studies to estimate linear models. J. Educ. Stat. 17, 341–362 (1992)
Becker, B.J., Fahrbach, K.: A comparison of approaches to the synthesis of correlation matrices. In: Annual Meeting of the American Educational Research Association, New Orleans (1994)
Becker, B.J., Schram, C.M.: Examining explanatory models through research synthesis. In: Cooper, H., Hedges, L.V. (eds.) Handbook of Research Synthesis, pp. 357–381. Russell Sage Foundation, New York (1994)
Beckman, L.R., Aizenberg, R., Forsythe, A.B., Day, T.: A theoretical analysis of antecedents of young couples’ fertility decisions and outcomes. Demography 20, 519–533 (1983)
Belsley, D.A.: Conditioning Diagnostics: Collinearity and Weak Data in Regression. Wiley, New York (1991)
Bentler, P.M.: Structural modeling and the scientific method: comments on Freedman’s critique. J. Educ. Stat. 12, 151–157 (1987)
Bentler, P.M., Bonett, D.G.: Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 88, 588–606 (1980)
Bentler, P.M., Chou, C.P.: Practical issues in structural modeling. Sociol. Method Res. 16, 78–117 (1987)
Bentler, P.M., Chou, C.P.: Practical issues in structural modeling. In: Long, J.S. (ed.) Common Problems/Proper Solutions: Avoiding Error in Quantitative Research, pp. 161–192. Sage Publications, Beverly Hills (1993)
Bentler, P.M.: Theory and implementation of EQS: A structural equations program. BMDP Statistical Software (1985)
Bentler, P.M., Speckart, G.: Attitudes ‘cause’ behaviors: a structural equation perspective. J. Personal. Soc. Psychol. 40, 226–238 (1981)
Bentler, P.M., Stein, J.A.: Structural equation models in medical research. Stat. Methods Med. Res. 1, 159–181 (1992)
Bentler, P.M., Weeks, D.G.: Linear structural equations with latent variables. Psychometrika 45, 289–308 (1980)
Bentler, P.M., Lee, S.-Y., Weng, L.-J.: Multiple population covariance structure analysis under arbitrary distribution theory. Commun. Stat. Theory Method 16, 1951–1964 (1987)
Biesanz, J.C., Deeb-Sossa, N., Papadakis, A.A., Bollen, K.A., Curran, P.J.: The role of coding time in estimating and interpreting growth curve models. Psychol. Methods 9, 30–52 (2004)
Blalock, H.M.: Causal Inferences in Nonexperimental Research. Norton, New York (1961b)
Blalock, H.M.: Four-variable causal models and partial correlations. Am. J. Sociol. 68, 182–194 (1962)
Blalock, H.M.: Making causal inferences for unmeasured variables from correlations among indicators. Am. J. Sociol. 69, 53–62 (1963)
Blalock, H.M.: Causal Inferences in Nonexperimental Research. University of North Carolina, Chapel Hill (1964)
Blalock, H.M.: Multiple indicators and the causal approach to measurement error. Am. J. Sociol. 75, 264–273 (1969)
Blalock, H.M.: Causal Models in The Social Sciences. Aldine-Atherton, Chicago (1971)
Blalock, H.M.: Are there really any constructive alternatives to causal modeling? Sociol. Methodol. 21, 325–335 (1991)
Bock, R.D., Lieberman, M.: Fitting a response model for n dichotomously scored items. Psychometrika 35, 179–197 (1970)
Bollen, K.A.: A new incremental fix index for general structural equation models. Sociol. Methods Res. 17, 303–316 (1989b)
Bollen, K.A.: Liberal democracy: validity and method factors in cross-national measures. Am. J. Pol. Sci. 11, 1207–1230 (1993)
Bollen, K.A., Curran, P.J.: Latent Curve Models: A Structural Equation Perspective. Wiley, New York (2006)
Bollen, K.A., Long, J.S.: Testing Structural Equation Models. Sage Publications, Beverly Hills (1993)
Bollen, K.A., Stine, R.A.: Bootstrapping goodness-of-fit measures in structural equation models. Sociol. Methods Res. 21, 205–229 (1992)
Boomsma, A.: On the robustness Of LISREL (Maximum Likelihood Estimation) against small sample size and non-normality. Unpublished Ph.D. Dissertation, Groningen, University of Groningen (1983)
Boomsma, A., Hoogland, J.J.: The robustness of LISREL modeling revised. In: Cudeck, R., DuToit, S., Sörbom, D. (eds.) Structural Equation Modeling: Present and Future, pp. 139–168. Scientific Software International, Lincolnwood (2001)
Boudon, R.: A method of linear causal analysis: dependence analysis. Am. Sociol. Rev. 30, 365–374 (1965)
Breckler, S.J.: Applications of covariance structure modeling in psychology:Cause for concern? Psychol. Bull. 107, 260–370 (1990)
Brown, S.P., Peterson, R.A.: Antecedents and consequences of salesperson job satisfaction: meta-analysis and assessment of causal effects. J. Mark. Res. 30, 63–77 (1993)
Browne, M.W.: Generalized least-squares estimators in the analysis of covariance structures. S. Afr. Stat. J. 8, 1–24 (1974)
Browne, M.W.: Covariance structures. In: Howkins, D.M. (ed.) Topics in Applied Multivariate Analysis, pp. 72–141. Cambridge University Press, Cambridge (1982)
Browne, M.W.: Asymptotically distribution-free methods for the analysis of covariance structures. Br. J. Math. Stat. Psychol. 37, 62–83 (1984)
Browne, M.W., Arminger, G.: Specification and estimation of mean and covariance structure models. In: Arminger, G., Clogg, C.C., Sobel, M.E. (eds.) Handbook of Statistical Modeling for the Social and Behavioral Sciences, pp. 185–249. Plenum, New York (1995)
Browne, M.W., Cudeck, R.: Single sample cross-validation indices for covariance structures. Multivar. Behav. Res. 25, 181–185 (1993)
Browne, M.W., Mels, G.: RAMONA User’s Guide. Unpublished Report. Columbus, Department of Psychology, Ohio State University (1990)
Browne, M.W., MacCallum, R.C., Kim, C.-T., Andersen, B.L., Glaser, R.: When fit indices and residuals are incompatible. Psychol. Methods 7, 403–421 (2002)
Bryk, A.S., Raudenbush, S.W.: Application of hierarchical linear models to assessing change. Psychol. Bull. 101, 147–158 (1987)
Bryk, A.S., Raudenbush, S.W., Congdon, R.: HLM 4 for Windows. Scientific Software International, Chicago (1996)
Bynner, J.M., Romney, D.M.: Intelligence, fact or artefact: alternative structures for cognitive abilities. Br. J. Educ. Psychol. 56, 13–23 (1986)
Byrne, B.M.: Structural Equation Modeling with Amos: Basic Concepts, Applications and Programming. Multivariate Applications Series. Routledge, London (2010)
Cartwright, N.: Nature’s Capacities and Their Measurement. Cambridge University Press, Cambridge (1989)
Cartwright, N.: The Dappled World: a Study of the Boundaries of Science. Cambridge University Press, Cambridge (1999)
Cartwright, N.: Against the completability of science. In: Stone, M.W.F., Wolff, J. (eds.) The Proper Ambition of Science, pp. 209–222. Routledge, London (2001)
Chassin, L., Pillow, D.R., Curran, P.J., Molina, B.S.G., Barrera Jr., M.: Relation of parental alcoholism to early adolescent substance use: a test of three mediating mechanism. J. Abnorm. Psychol. 102, 3–19 (1993)
Chen, M.-S., Land, K.C.: Testing the health belief model—LISREL analysis of alternative models of causal relationships between health beliefs and preventive dental behavior. Soc. Psychol. Q. 49, 45–60 (1986)
Cheung, M.W.L., Chan, W.: Meta-analytic structural equation modeling: a two-stage approach. Psychol. Methods 10, 40–64 (2005)
Cheung, S.F.: Examining solutions to two practical issues. In: Meta-analysis: dependent correlations and missing data in correlation matrices. Unpublished doctoral dissertation, Chinese University of Hong Kong (2000)
Cheung, M.W.L.: Meta-analysis for structural equation modeling: a two-stage approach. Unpublished doctoral dissertation, Chinese University of Hong Kong (2002)
Chin, W.W., Peterson, R.A., Brown, S.P.: Structural equation modeling in marketing: some practical reminders. J. Mark. Theory Pract. 16, 287–298 (2008)
Chou, C.-P., Bentler, P.M.: Model modification in covariance structure modelling: a comparison among likelihood ratio, lagrange multiplier and Wald tests. Multivar. Behav. Res. 25, 115–136 (1990)
Cliff, N.: Some cautions concerning the application of causal modelling methods. Multivar. Behav. Res. 18, 115–126 (1983)
Cohen, J., Cohen, P.: Applied Multiple Regression/Correlation Analysis For The Behavioral Sciences. Erlbaum, Hillsdale (1983)
Collingwood, R.G.: An Essay on Metaphysics. Oxford University Press, Oxford (1940)
Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design and Analysis Issues For Field Setting. Houghton Mifflin Company, Boston (1979)
Corey, D.M., Dunlap, W.P., Burke, M.J.: Averaging correlations: expected values and bias in combined Pearson and Fisher’s z transformations. J. Gen. Psychol. 125, 245–261 (1998)
Cortina, J.M., Chen, G., Dunlap, W.P.: Testing interaction effects in LISREL: examination and illustration of available procedures. Organ. Res. Methods 4, 324–360 (2001)
Cudeck, R., Henly, S.J.: Model selection in covariance structures analysis and the ‘problem’ of sample size: a clarification. Psychol. Bull. 109, 512–519 (1991)
Curran, P.J., West, S.G., Finch, J.F.: The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychol. Methods 1, 16–29 (1996)
Dawid, A.P.: Causal inference without counterfactuals (with discussion). J. Am. Stat. Assoc. 95, 407–448 (2000)
Depaoli, S.: Mixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation. Psychol. Methods 18, 186–219 (2013)
Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley, New York (1981)
Duncan, W.J.: Physical Similarity and Dimensional Analysis. Edward Arnold, London (1966)
Duncan, O.D.: Introduction to Structural Equation Models. Academic Press, New York (1975)
Duncan, S.C., Duncan, T.E., Strycker, L.A.: Alcohol use from ages 9-16: a cohort-sequential latent growth model. Drug Alcohol Depend. 81, 71–81 (2006)
Epstein, R.J.: A History of Econometrics. North-Holland, Amsterdam (1987)
Fisher, R.A.: Statistical Methods for Research Workers. Collier-MacMillan Publishers, London (1970)
Fornell, C.: Issues in the application of covariance structure analysis. J. Consum. Res. 9, 443–448 (1983)
Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables and measurement errors. J. Mark. Res. 18, 39–50 (1981)
Fouladi, R.T.: Covariance structure analysis techniques under conditions of multivariate normality and nonnormality modified and bootstrap based test statistics. In: Paper presented at the Annual Meeting of the American Educational Research Association, San Diego, April 13–17 (1998)
Fox, J.: Statistical data analysis and social science. In: Conference on Social Science and Statistics in Honour of the late Clifford, C. Clogg, (1997)
Fox, J.: Structural equation modeling with the SEM package in R. Struct. Equ. Model. 13, 465–486 (2006)
Frank, K.A.: Impact of a confounding variable on a regression coefficient. Sociol. Methods Res. 29, 147–194 (2000)
Freedman, D.A.: From association to causation via regression. In: McKim, C., Turner, S. (eds.) Causality in Crisis, pp. 201–248. University of Notre Dame Press, Notre Dame (1997)
Freedman, D.A.: Statistical models for causation: what inferential leverage do they provide? Eval. Rev. 30, 713–791 (2006)
Frish, R.: Statistical confluence analysis by means of complete regression systems. Universitetets Økonomiske Institutt, Oslo (1934)
Frish, R., Waugh, F.: Partial time regressions as compared with individual trends. Econometrica 1, 387–401 (1933)
Furlow, C.F., Beretvas, S.N.: Meta-analytic methods of pooling correlation matrices for structural equation modeling under different patterns of missing data. Psychol. Methods 10, 227–254 (2005)
Gau, J.M.: Basic principles and practices of structural equation modeling in criminal justice and criminology research. J. Crim. Justice Educ. 21, 136–151 (2010)
Gerbing, D.W., Anderson, J.C.: The effect of sampling error and model characteristics on parameter estimation for maximum likelihood confirmatory factor analysis. Multivar. Behav. Res. 20, 255–271 (1988)
Gibbs, J.J., Giever, D., Higgins, G.E.: A test of Gottfredson and Hirschi’s general theory using structural equation modeling. Crim. Justice Behav. 30, 441–458 (2003)
Glymour, C., Scheines, R., Spirtes, P., Kelly, K.: Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling. Academic Press, Orlando (1987)
Goldberger, A.S.: Econometric Theory. Wiley, New York (1964)
Goldberger, A.S.: Econometrics and psychometrics: a survey of communalities. Psychometrika 36, 83–107 (1971)
Goldberger, A.S.: Structural equation methods in the social sciences. Econometrica 40, 979–1001 (1972)
Goldberger, A.S., Duncan, O.D.: Structural Equation Models in the Social Sciences. Academic Press, New York (1973)
Goldstein, H.: Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika 73, 43–56 (1986)
Goldstein, H., Browne, W.J.: Multilevel factor analysis modelling using markov chain monte carlo (MCMC) estimation. In: Marcoulides, G., Moustaki, I. (eds.) Latent Variable and Latent Structure Models, pp. 225–243. Lawrence Erlbaum, Englewood Cliffs (2002)
Goldstein, H., McDonald, R.P.: A general model for the analysis of multi-level data. Psychometrika 53, 455–467 (1988)
Golob, T.F.: Structural equation modeling for travel behavioral research. Transp. Res. Part B Methodol. 37, 1–25 (2003)
Green, S.B., Thompson, M.S., Poirier, J.: Exploratory analyses to improve model fit: errors due to misspecification and a strategy to reduce their occurrence. Struct. Equ. Model. 6, 113–126 (1999)
Grewal, R., Cote, J.A., Baumgartner, H.: Multicollinearity and measurement error in structural equation model: implications for theory testing. Mark. Sci. 23, 519–529 (2004)
Haavelmo, T.: The statistical implications of a system of simultaneous equations. Econometrica 11, 1–12 (1943)
Hafdahl, A.R.: Multivariate meta-analysis for exploratory factor analytic research. Unpublished doctoral dissertation, University of North Carolina at Chapel Hill (2001)
Hancock, G.R., Nevitt, J.: Bootstrapping and the identification of exogenous latent variables within structural equation models. Struct. Equ. Model. 6, 394–399 (1999)
Hanushek, E.A., Jackson, J.E.: Statistical Methods for Social Scientists. Academic Press, New York (1977)
Harman, H.: Modern Factor Analysis. University of Chicago Press, Chicago (1960)
Hauser, R.M., Goldberger, A.S.: The treatment of unobservable variables in path analysis. Sociol. Methodol. 3, 81–117 (1971)
Hayduk, L.A.: Structural Equation Modeling with LISREL: Essentials and Advances. The John Hopkins University Press, Baltimore (1987)
Hayduk, L.A.: Should model modification be oriented toward improving data fit or encouraging creative and analytic thinking? Multivar. Behav. Res. 25, 193–196 (1990)
Hempel, C.G.: Aspects of Scientific Explanation, and other Essays in the Philosophy of Science. Free Press, New York (1965)
Holland, P.W.: Causal inference, path analysis and recursive structural equation models. In: Clogg, C. (ed.) Sociological Methodology, pp. 449–484. American Sociological Association, Washington (1988)
Holland, P.W.: Some reflections on Freedman’s critique. Found. Sci. 1, 50–57 (1995)
Hooper, D., Coughlan, J., Mullen, M.: Structural equation modelling: guidelines for determining model fit. Electron. J. Bus. Res. Methods 6, 53–60 (2008)
Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)
Howe, W.G.: Some Contributions to Factor Analysis. Report No. 0RNL-1919, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1955)
Hu, L.T., Bentler, P.M.: Cutoff Criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model. 6, 1–55 (1999)
Hu, L.T., Bentler, P.M., Kano, Y.: Can test statistics in covariance structure analysis be trusted? Psychol. Bull. 112, 351–362 (1992)
Hui, S.L., Berger, J.O.: Empirical Bayes estimation of rates in longitudinal studies. J. Am. Stat. Assoc. 78, 753–760 (1983)
Hulland, J., Chow, Y.H., Lam, S.: Use of causal models in marketing research: a review. Int. J. Res. Mark. 13, 181–197 (1996)
Hume, D.: A Treatise of Human Nature. Oxford University Press, Cambridge (1999)
Hunter, J.E., Schmidt, F.L.: Methods of Meta-Analysis: Correcting Error and Bias in Research Findings. Sage Publications, Newbury Park (1990)
Hunter, J.E., Schmidt, F.L.: Methods of meta-analysis: correcting error and bias in research findings. Sage Publications, Thousand Oaks (2004)
Irzik, G., Meyer, E.: Causal modeling: new directions for statistical explanation. Philos. Sci. 54, 495–514 (1987)
Issac, P.D.: Linear regression, structural relations and measurement errors. Psychol. Bull. 74, 213–218 (1970)
James, L.R., Mulaik, S.A., Brett, J.M.: Causal Analysis: Assumptions, Models and Data. Sage Publications, Beverly Hills (1982)
Jennrich, R.I., Clarkson, D.B.: A feasible method for standard errors of estimate in maximum likelihood factor analysis. Psychometrika 45, 237–247 (1980)
Jennrich, R.I., Robinson, S.M.: A Newton–Raphson algorithm for maximum likelihood factor analysis. Psychometrika 34, 111–123 (1969)
Jöreskog, K.G.: A general approach to confirmatory maximum likelihood factor analysis. Psychometrika 34, 183–202 (1969)
Jöreskog, K.G.: A general method for analysis of covariance structures. Biometrika 57, 239–251 (1970)
Jöreskog, K.G.: Simultaneous factor analysis in several populations. Psychometrika 36, 409–426 (1971)
Jöreskog, K.G.: A general method for estimating a linear structural equation system. In: Goldberger, A.S., Duncan, O.D. (eds.) Structural Equation Models in the Social Sciences, pp. 83–112. Academic Press, New York (1973)
Jöreskog, K.G., Sorböm, D.: PRELIS: User’s Reference Guide. SSI, Lincolnwood (1996)
Jöreskog, K.G., Sörbom, D.: LISREL: A General Computer Program for Estimation of a Linear Structural Equation System by Maximum Likelihood Methods. National Educational Resources, Chicago (1978)
Jöreskog, K.G., Sörbom, D.: LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language. SSI, Chicago (1993)
Jöreskog, K.G., Gruvaeus, G.T., Van Thillo, M.: ACOVS: a general computer program for analysis of covariance structures. ETS Res. Bull. Ser. 1970, 1–54 (1970)
Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200 (1958)
Kaplan, D.: Estimator conditioning diagnostics for covariance structure models. Sociol. Methods Res. 23, 200–229 (1994)
Kaplan, D.: Statistical power in structural equation modeling. In: Hoyle, R.H. (ed.) Structural Equation Modeling: Concepts, Issues, and Applications, pp. 100–117. Sage Publications, Thousand Oaks (1995)
Kaplan, D., Depaoli, S.: Bayesian statistical methods. In: Little, T.D. (ed.) Oxford Handbook of Quantitative Methods, pp. 407–437. Oxford University Press, Oxford (2013)
Karimi, L., Meyer, D.: Structural equation modeling in psychology: the history, development and current challenges. Int. J. Psychol. Stud. 6, 123–133 (2014)
Keesling, W.: Maximum likelihood approaches to causal flow analysis. PhD thesis. University Press, Chicago (1972)
Kelloway, B.K.: Using LISREL for Structural Equation Modeling: A Researcher’s Guide. Sage Publications, Thousand Oaks (1998)
Kenny, D.A.: Correlation and Causality. Wiley, New York (1979)
Kenny, D., Judd, C.M.: Estimating the nonlinear and interactive effects of latent variables. Psychol. Bull. 96, 201–210 (1984)
Kenny, D.A., McCoach, D.B.: Effect of the number of variables on measures of fit in structural equation modeling. Struct. Equ. Model. 10, 333–351 (2003)
Kenny, D.A., Kashy, D.A., Bolger, N.: Data analysis in social psychology. In: Gilbert, D., Fiske, S., Lindzey, G. (eds.) Handbook of Social Psychology, pp. 233–265. McGraw-Hill, New York (1998)
Kim, S.Y., Suh, Y., Kim, J.S., Albanese, M., Langer, M.M.: Single and multiple ability estimation in the SEM framework: a non-informative Bayesian estimation approach. Multivar. Behav. Res. 48, 563–591 (2013)
Klein, L.R.: Economic Fluctuations in the United States 1921–1941. Wiley, New York (1950)
Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford Press, New York (2011)
Kohn, M., Schooler, C.: Job conditions and personality: a longitudinal assessment of their reciprocal effects. Am. J. Sociol. 87, 1257–1286 (1982)
Koopmans, T.: Statistical estimation of simultaneous economic relations. J. Am. Stat. Assoc. 40, 448–466 (1945)
Koopmans, T.C.: Identification problems in economic model construction. Econometrica 17, 125–143 (1949)
Koopmans, T., Rubin, H., Leipnik, R.: Measuring the equation systems of dynamic economics. In: Koopmans, T. (ed.) Statistical Inference in Dynamic Economic Models, pp. 53–237. Cowles Commission Monograph, John Wiley, New York (1950)
Landis, R.S.: Successfully combining meta-analysis and structural equation modeling: recommendations and strategies. J. Bus. Psychol. 28, 251–261 (2013)
Lawley, D.N.: The estimation of factor loadings by the method of maximum likelihood. Proc. R. Stat. Soc. Edinb. 60, 64–82 (1940)
Lawley, D.N.: The application of the maximum likelihood method to factor analysis. Br. J. Psychol. 33, 172–175 (1943)
Lawley, D.N.: Estimation in factor analysis under various initial assumptions. Br. J. Stat. Psychol. 11, 1–12 (1958)
Lawley, D.N.: Some new results in maximum likelihood factor analysis. Proc. R. Stat. Soc. Edinb. 67, 256–264 (1967)
Lawley, D.N., Maxwell, A.E.: Factor Analysis as a Statistical Method. Butterworth, London (1963)
Leamer, E.E.: Specification Searches: Ad hoc Inference with Non-experimental Data. Wiley, New York (1978)
Lee, S.-Y., Song, X.-Y., Poon, W.-Y.: Comparison of approaches in estimating interaction and quadratic effects of latent variables. Multivar. Behav. Res. 39, 37–67 (2004)
Li, C.C.: The concept of path coefficient and its impact on population genetics. Biometrics 12, 190–210 (1956)
Li, C.C.: Path Analysis: A Primer. Boxworth Press, Pacific Grove (1975)
Liang, J., Bentler, P.M.: An EM algorithm for fitting two-level structural equation models. Psychometrika 69, 101–122 (2004)
Linhart, H., Zucchini, W.: Model Selection. Wiley, New York (1986)
Linver, M.R., Brooks-Gunn, J., Kohen, D.E.: Family processes as pathways from income to young children’s development. Dev. Psychol. 38, 719–734 (2002)
Little, T.D., Card, N.A., Bovaird, J.A., Preacher, K.J., Crandall, C.S.: Structural equation modeling of mediation and moderation with contextual factors. In: Little, T.D., Bovaird, J.A., Card, N.A. (eds.) Modeling Contextual Effects in Longitudinal Studies, pp. 207–230. LEA, New York (2007)
Liu, B., De la Fuente, A., Hoeschele, I.: Gene network inference via structural equation modeling in genetical genomics experiements. Genetics 178, 1763–1776 (2008)
Long, J.S., Trivedi, P.K.: Some specification tests for linear regression model. In: Bollen, K.A., Long, J.S. (eds.) Testing Structural Equation Models, pp. 66–110. Sage Publications, Newbury Park (1993)
Longford, N.T.: A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika 74, 817–827 (1987)
MaaCallum, R.C., Wegener, D.T., Uchino, B.N., Fabrigar, L.R.: The problem of equivalent models in applications of covariance structure analysis. Psychol. Bull. 114, 185–199 (1993)
MaCallum, R.C., Austin, J.T.: Applications of structural equation modeling in psychological research. Annu. Rev. Psychol. 51, 201–226 (2000)
MacCallum, R.C.: Specification searches in covariance structure modeling. Psychol. Bull. 100, 107–120 (1986)
MacCallum, R.C.: The need for alternative measures of fit in covariance structure modeling. Multivar. Behav. Res. 25, 157–162 (1990)
MacCallum, R.C., Tucker, L.R.: Representing sources of error in the common factor model: implications for theory and practice. Psychol. Bull. 109, 501–511 (1991)
MacCallum, R.C., Roznowski, M., Necowitz, L.B.: Model modification in covariance structure analysis: the problem of capitalization on chance. Psychol. Bull. 111, 490–504 (1992)
MacCallum, R.C., Browne, M.W., Sugawara, H.M.: Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1, 130–149 (1996)
Mann, H.B., Wald, A.: On the statistical treatment of linear stochastic difference equations. Econometrica 11, 173–220 (1943)
Marcoulides, G.A.: Modern Methods for Business Research. Psychology Press, New York (2013)
Marini, M.M., Singer, B.: Causality in the social science. In: Clogg, C. (ed.) Sociological Methodology, pp. 347–409. American Sociological Association, Washington (1998)
Marsh, H.W., Dawson, M., Pietsch, J., Walker, R.: Overcoming problems in confirmatory factor analyses of MTMM data: the correlated uniqueness model and factorial invariance. Multivar. Behav. Res. 27, 489–507 (2004a)
Marsh, H.W., Wen, Z., Hau, K.-T.: In search of golden rules: comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Struct. Equ. Model. 11, 320–341 (2004b)
Mason, W.M., Wong, G.Y., Entwisle, B.: Contextual analysis through the multilevel linear model. Sociol. Methodol. 14, 72–103 (1983)
Matsueda, R.L.: Testing control theory and differential association: a causal modeling approach. Am. Sociol. Rev. 47, 489–504 (1982)
Matsueda, R.L.: Key advances in the history of structural equation modeling. In: Hoyle, R.H. (ed.) Handbook of Structural Equation Modeling, pp. 17–42. Guilford Press, New York (2012)
Matsueda, R.L., Bielby, W.T.: Statistical power in covariance structure models. In: Tuma, N.B. (ed.) Sociological Methodology, pp. 120–158. American Sociological Association, Washington (1986)
Matsueda, R.L., Heimer, K.: Race, family structure, and delinquency: a test of differential association and social control theories. Am. Sociol. Rev. 52, 826–840 (1987)
Mauro, R.: Understanding L.O.V.E. (left out variable error): a method for estimating the effects of omitted variables. Psychol. Bull. 108, 314–329 (1990)
McArdle, J.J., Epstein, D.: Latent growth curves within developmental structural equation models. Child Dev. 58, 110–133 (1987)
McArdle, J.J., Hamagami, F.: Multilevel models from a multiple group structural equation perspective. In: Marcoulides, G.A., Schumaker, R.E. (eds.) Advanced Structural Equation Modeling: Issues and Techniques, pp. 89–124. Erlbaum, Mahwah (1996)
McArdle, J.J., McDonald, R.P.: Some algebraic properties of the reticular action model for moment structures. Br. J. Math. Stat. Psychol. 37, 234–251 (1984)
McDonald, R.P.: Nonlinear factor analysis. Psychometric Monographs 15, Psychometric Society, Richmond (1967)
McDonald, R.P.: A simple comprehensive model for the analysis of covariance structures. Br. J. Math. Stat. Psychol. 31, 59–72 (1978)
McDonald, R.P.: Exploratory and confirmatory nonlinear factor analysis. In: Wainer, W.H., Messick, S. (eds.) Principles of Modern Psychological Measurement: Festschrift for Frederick M. Lord, pp. 197–213. Erlbaum, Hillsdale (1983)
McDonald, R.P.: A general model for two-level data with responses missing at random. Psychometrika 58, 575–585 (1993)
McDonald, R.P.: The Bilevel reticular action model for path analysis with latent variables. Sociol. Methods Res. 22, 399–413 (1994)
McDonald, R.P.: The specific analysis of structural equation models. Multivar. Behav. Res. 39, 687–713 (2004)
McDonald, R.P., Goldstein, H.: Balanced versus unbalanced designs for linear structural relations in two-level data. Br. J. Math. Stat. Psychol. 42, 215–232 (1989)
Meehl, P.E., Waller, N.G.: The path analysis controversy: a new statistical approach to strong appraisal of verisimilitude. Psychol. Methods 2, 283–300 (2002)
Meredith, W., Tisak, J.: ‘Tuckerizing’ growth curves. Paper presented at the annual meeting of the Psychometric Society, Santa Barbara, CA, July (1984)
Miller, N., Pollock, V.E.: Meta-analytic synthesis for theory development. In: Cooper, H., Hedges, L.V. (eds.) The Handbook of Research Synthesis, pp. 457–483. Russell Sage Foundation, New York (1994)
Mooijaart, A., Bentler, P.M.: (1986) Random polynomial factor analysis. In: Diday, W.E. (ed.) Proceedings of Fourth International Symposium: Data Analysis and Informatics, pp. 249–258. Elsevier Science Publishers, Amsterdam (1986)
Mosier, C.I.: Determining a simple structure when loadings for certain tests are known. Psychometrika 4, 149–162 (1939)
Moulder, B.C., Algina, J.: Comparison of methods for estimating latent variable interactions. Struct. Equ. Model. 9, 1–19 (2002)
Mulaik, S.A., James, L.R.: Objectivity and reasoning in science and structural equation modeling. In: Hoyle, R.H. (ed.) Structural Equation Modeling: Concepts, Issues, and Applications, pp. 118–137. Sage Publications, Thousand Oaks (1995)
Mulaik, S.A., James, L.R., Van Alstine, J., Bennet, N., Lind, S., Stilwell, C.D.: Evaluation of goodness-of-fit indices for structural equation models. Psychol. Bull. 105, 430–445 (1989)
Muthen, B.O.: Response to freedman’s critique of path analysis: improve credibility by better methodological training. J. Educ. Stat. 10, 178–184 (1987)
Muthén, B.O.: Contributions to factor analysis of dichotomous variables. Psychometrika 43, 551–560 (1978)
Muthén, B.O.: A structural probit model with latent variables. J. Am. Stat. Assoc. 74, 807–811 (1979)
Muthén, B.O.: Latent variable structural equation model with categorical data. J. Econ. 22, 48–65 (1983)
Muthén, B.O.: A general structural equation model with dichotomous, ordered categorical and continuous latent variable indicators. Psychometrika 49, 115–132 (1984)
Muthén, B.O.: LISCOMP: Analysis of Linear Structural Equations with a Comprehensive Measurement Model. Scientific Software, Mooresville (1987)
Muthén, B.O.: Latent variable modeling in heterogeneous populations. Psychometrika 54, 557–585 (1989a)
Muthén, B.O.: Multiple group structural modelling with nonnormal continuous variables. Br. J. Math. Stat. Psychol. 42, 55–62 (1989b)
Muthén, B.O.: Mean and covariance structure analysis of hierarchical data. UCLA Statistics Preprint 62, UCLA, Department of Statistics, Los Angeles (1990)
Muthén, B.O.: Multilevel factor analysis of class and student achievement components. J. Educ. Meas. 28, 338–354 (1991)
Muthén, B.O.: Modeling of longitudinal and multi-level data. In: Raftery, A.E. (ed.) Sociological Methodology, pp. 453–480. Blackwell, Boston (1997)
Muthén, B.O.: Second-generation structural equation modeling with a combination of categorical and continuous latent variables. In: Collins, L., Sayer, A. (eds.) New Methods for the Analysis of Change, pp. 291–322. APA, Washington (2001)
Muthén, B.O.: Latent variable analysis: growth mixture modeling and related techniques for longitudinal data. In: Kaplan, D. (ed.) Handbook of Quantitative Methodology for the Social Sciences, pp. 345–368. Sage Publications, Newbury Park (2004)
Muthén, B.O.: Bayesian analysis in Mplus: a brief introduction. Technical Report. Version 3 (2010)
Muthén, L.K., Muthén, B.O.: Mplus User’s Guide. Muthén & Muthén, Los Angeles (1998)
Muthén, B.O., Satorra, A.: Complex sample data in structural equation modeling. In: Marsden, P.V. (ed.) Sociological Methodology, pp. 267–316. The American Sociological Association, Washington (1995)
Muthén, B., du Toit, S.H.C., Spisic, D.: Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes (Technical report). Univeristy of California, Los Angeles (1997)
Nagin, D.S., Land, K.C.: Age, criminal careers, and population heterogeneity: specification and estimation of a nonparametric mixed poisson model. Criminology 31, 327–362 (1993)
Neale, M.C., Hunter, M.D., Pritikin, J.N., Zahery, M., Brick, T.R., Kirkpatrick, R.M., Estabrook, R., Bates, T.C., Maes, H.H., Boker, S.M.: OpenMx 2.0: extended structural equation and statistical modeling. Psychometrika 81, 535–549 (2016)
Nevitt, J., Hancock, G.R.: Evaluating small sample approaches for model test statistics in structural equation modeling. Multivar. Behav. Res. 39, 439–478 (2001)
Newsom, J.T.: A multilevel structural equation model for dyadic data. Struct. Equ. Model. 9, 431–447 (2002)
Neyman, J., Pearson, E.: On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 231, 289–337 (1933)
Niles, H.E.: Correlation, causation and Wright’s theory of path coefficients. Genetics 7, 258–273 (1922)
Olsson, U.: Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika 44, 443–460 (1979)
OpenMx Development Team.: OpenMx Documentation. Release 1.1.1-1785. http://openmx.psyc.virginia.edu/docs/OpenMx/latest/ (2011)
Oud, J.H.L., Voelkle, M.C.: Continuous time analysis. In: Michalos, A.C. (ed.) Encyclopedia of Quality of Life and Well-Being Research, pp. 1270–1274. Springer, Dordrecht (2014)
Pearl, J.: Graphs, causality, and structural equation models. Sociol. Methods Res. 27, 226–284 (1998)
Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)
Pearl, J.: Causal inference in the health science: a conceptual introduction. Health Serv. Outcome Res. Methodol. 2, 189–220 (2002)
Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 6, 559–572 (1901a)
Pearson, K.: Mathematical contribution to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philos. Trans. R. Soc. A 195, 1–47 (1901b)
Poon, W.-Y., Lee, S.-Y.: Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients. Psychometrika 52, 429–430 (1987)
Pratt, J.W., Schlaifer, R.: On the nature and discovery of structure. J. Am. Stat. Assoc. 79, 9–21 (1984)
Pratt, J.W., Schlaifer, R.: On the interpretation and observation of laws. J. Econ. 39, 23–52 (1988)
Preacher, K.J., Wichman, A.L., MacCallum, R.C., Briggs, N.E.: Latent Growth Curve Modeling. Sage Publications, Thousand Oaks (2008)
Pugesek, B.H., Tomek, A., Von Eye, T.: Structural Equation Modeling—Applications in Ecological and Evolutionary Biology. Cambridge University Press, Cambridge (2003)
Rabe-Hesketh, S., Skrondal, A., Pickles, A.: Generalized multilevel structural equation modeling. Psychometrika 69, 167–190 (2004)
Raftery, A.E.: Bayesian model selection in structural equation models. In: Bollen, K.A., Long, J.S. (eds.) Testing Structural Equation Models, pp. 163–180. Sage Publications, Newberry Park (1993)
Raftery, A.E.: Bayesian model selection in social research. In: Marsden, P.V. (ed.) Sociological Methodology, pp. 111–165. American Sociological Association, Washington (1995)
Raina, P., O’Donnell, M., Rosenbaum, P., Brehaut, J., Walter, S.D., Russell, D., Swinton, M., Zhu, B., Wood, E.: The health and well-being of caregivers of children with cerebral palsy. Pediatrics 115, 626–636 (2005)
Rao, C.R.: Some statistical methods for comparison of growth curves. Biometrika 51, 83–90 (1958)
Rao, P., Holt, D.: Do green supply chains lead to competitiveness and economic performance. Manag. Sci. Oper. 25, 898–916 (2005)
Raudenbush, S.W.: Comparing personal trajectories and drawing causal inferences from longitudinal data. Annu. Rev. Psychol. 52, 501–525 (2001)
Raudenbush, S.W., Bryk, A.S.: Hierarchical Linear Models. Sage Publications, Thousand Oaks (2002)
Rindskopf, D.: Structural equation models: empirical identification: heywood cases and related problems. Sociol. Methods Res. 13, 109–119 (1984)
Rogosa, D.: Causal models do not support scientific conclusions: a comment in support of Freedman. J. Educ. Stat. 12, 185–195 (1987)
Rogosa, D.: Myths about longitudinal research. In: Schaie, K.W., Campbell, R.T., Meredith, W., Rawlings, S.C. (eds.) Methodological Issues in Aging Research, pp. 3–66. LEA, Mahwah (1988)
Rogosa, D.: Myths and methods myths about longitudinal research research plus supplemental questions. In: Gottman, K.M. (ed.) The Analysis of Change, pp. 3–66. LEA, Mahwah (1995)
Rosenbaum, P.R.: Dropping out of high school in the United States: an observational study. J. Educ. Stat. 11, 207–224 (1986)
Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in in observational studies for causal effects. Biometrika 70, 41–55 (1983)
Rovine, M.J., Molenaar, P.C.M.: A structural modeling approach to the random coefficients model. Multivar. Behav. Res. 35, 51–88 (2000)
Rovine, M.J., Molenaar, P.C.M.: A structural equations modeling approach to the general linear mixed model. In: Collins, L., Sayer, A. (eds.) New Methods for the Analysis of Change, pp. 65–96. APA Press, Washington (2001)
Rabe-Hesketh, S. Pickles, A., Skrondal, A.: GLLAMM Manual. Tech. rept. 2001/01. Department of Biostatistics and Computing, Institute of Psychiatry, Kings College, University of London (2001)
Sackett, P.R., Laczo, R.M., Lippe, Z.P.: Differential prediction and the use of multiple predictors: the omitted variables problem. J. Appl. Psychol. 88, 1046–1056 (2003)
Sargan, J.: Estimation of economic relationships using instrumental variables. Econometrica 67, 557–586 (1958)
Saris, W.E., Satorra, A., Sörbom, D.: The detection and correction of specification errors in structural equation models. Sociol. Methodol. 17, 105–129 (1987)
Saris, W.E., Satorra, A., Van der Veld, W.M.: Testing structural equation models or detection of misspecifications? Struct. Equ. Model. 16, 561–582 (2009)
Sarris, W.E., Revilla, M.: Correction for measurement error in survey research: necessary and possible. Soc. Indic. Res. 127, 1005–1020 (2016)
Satorra, A., Bentler, P.M.: Scaling corrections for Chi-Square statistics in covariance structure analysis. American Statistical Association. In: Proceedings of Business and Economics Sections, , pp. 308–313. American Statistical Association, Alexandria (1988)
Satorra, A., Bentler, P.M.: Corrections to test statistics and standard errors in covariance structure analysis. In: Von Eye, A., Clogg, C.C. (eds.) Latent Variables Analysis: Applications for Developmental Research, pp. 399–419. Sage Publications, Thousand Oaks (1994)
Satorra, A., Bentler, P.M.: A scaled difference Chi square test statistics for moment structure analysis. Psychometrika 66, 507–514 (2001)
Satorra, A., Saris, W.: Power of the likelihood ratio test in covariance structure analysis. Psychometrika 50, 83–90 (1985)
Scheines, R., Spirtes, P., Glymour, C., Meek, C.: TETRAD II: Tools for Discovery. LEA, Hillsdale (1994)
Scheines, R., Spirtes, P., Glymour, C., Meek, C., Richardson, T.: TETRAD 3 User’s Manual. Department of Philosophy, Carnegie Mellon University, Pittsburgh (1997)
Scheines, R., Hoijtink, H., Boomsma, A.: Bayesian estimation and testing of structural equation models. Psychometrika 64, 37–52 (1999)
Schulze, R.: Meta-analysis: a comparison of approaches. Hogrefe and Huber Publishers, Toronto (2004)
Schumaker, R.E., Marcoulides, G.A.: Interaction and Nonlinear Effects in Structural Equation Modeling. LEA, New York (1998)
Shadish, W.R.: Meta-analysis and the exploration of causal mediating processes: a primer of examples, methods and issues. Psychol. Methods 1, 47–65 (1996)
Shook, L.C., Ketchen, D.J., Hult, G.T.M., Kacmar, K.M.: An assessment of the use of structural equation modeling in strategic management research. Strateg. Manag. J. 25, 397–404 (2004)
Simon, H.A.: Spurious correlation: a causal interpretation. J. Am. Stat. Assoc. 49, 467–479 (1954)
Skrondal, A., Rabe-Hesketh, S.: Generalized latent variable modeling: multilevel, longitudinal and structural equation models. Chapman and Hall, Boca Raton (2004)
Slutsky, E.: The summation of random causes as the source of cyclic processes. Econometrica 5, 105–146 (1937)
Sobel, M.E.: Causal inference in the social sciences. In: Arminger, G., Clogg, C.C., Sobel, M.E. (eds.) Handbook of Statistical Modeling for the Social and Behavioral Sciences, pp. 1–38. Plenum Press, New York (1995)
Sörbom, D.: A general method for studying differences in factor means and factor structures between groups. Br. J. Math. Stat. Psychol. 27, 229–239 (1974)
Spearman, C.: General intelligence: objectively determined and measured. Am. J. Psychol. 5, 201–293 (1904)
Spearman, C.: The Abilities of Man. Macmillan, New York (1927)
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. The MIT Press, Cambridge (1993)
Spirtes, P., Richardson, T., Meek, C., Scheines, R., Glymour, C.: Using path diagrams as a structural equation modeling tool. Sociol. Methods Res. 27, 182–225 (1995)
Stapleton, L.M.: An assessment of practical solutions for structural equation modeling with complex sample data. Struct. Equ. Model. 13, 28–58 (2006)
Steenkamp, J.-B.E.M., Baumgartner, H.: On the use of structural equation models for marketing modeling. Int. J. Res. Mark. 17, 195–202 (2000)
Steiger, J.H.: EzPATH: A Supplementary Module for SYSTAT and SYGRAPH. SYSTAT, Evanston (1989)
Steiger, J.H.: Driving fast in reverse: the relationship between software development, theory, and education in structural equation modeling. J. Am. Stat. Assoc. 96, 331–338 (2001)
Steiger, J.H., Lind, J.C.: Statistically-based tests for the number of common factors. In: Presentation at the Annual Meetings of the Psychometric Society, Iowa City (1980)
Stephenson, M.T., Holbert, R.L., Zimmerman, R.S.: On the use of structural equation modeling in health communication research. Health Commun. 20, 159–167 (2006)
Steyer, R.: Analyzing individual and average causal effects via structural equation models. Methodology 1, 39–54 (2005)
Tarka, P.: Marketing Research Effectiveness Conditions. Poznan University Press, Poznan (2017)
Theil, H.: Repeated Least-Squares Applied to a Complete Equation Systems. Central Planning Bureau. Mimeo, The Hague (1953a)
Theil, H.: Estimation and Simultaneous Correlation in Complete Equation Systems. Central Planning Bureau. Mimeo, The Hague (1953b)
Theil, H.: Principles of Econometrics. Wiley, New York (1971)
Thurstone, L.L.: The Vectors of Mind. University of Chicago Press, Chicago (1935)
Thurstone, L.L.: Primary mental abilities. Psychometric Monographs 1, Psychometric Society, Richmond (1938)
Thurstone, L.L.: Multiple Factor Analysis. University of Chicago Press, Chicago (1947)
Tomarken, A.J., Weller, N.G.: Potential problems with well fitting models. J. Abnorm. Psychol. 112, 578–598 (2003)
Tomarken, A.J., Weller, N.G.: Structural equation modeling: strengths, limitations and misconceptions. Annu. Rev. Clin. Res. 35, 469–499 (2005)
Tucker, L.R.: Determination of parameters of a functional relation by factor analysis. Psychometrika 23, 19–23 (1958)
Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)
Van de Schoot, R., Depaoli, S.: Bayesian analyses: where to start. Eur. Health Psychol. 16, 75–83 (2014)
Viswesvaran, C., Ones, D.S.: Theory testing: combining psychometric meta-analysis and structural equations modeling. Pers. Psychol. 48, 865–885 (1995)
Voelkle, M.C.: Reconsidering the use of autoregressive latent trajectory (ALT) models. Multivar. Behav. Res. 43, 564–591 (2008)
Voelkle, M.C., Oud, J.H.L., Davidov, E., Schmidt, P.: An SEM approach to continuous time modeling of panel data: relating authoritarianism and anomia. Psychol. Methods 17, 176–192 (2012)
Votaw, D.F.: Testing compound symmetry in a normal multivariate population. Ann. Math. Stat. 19, 189–196 (1948)
Wald, A.: A note of identification of economic relations. In: Koopmans, T.C. (ed.) Statistical Inference in Dynamic Economic Models, pp. 238–244. Wiley, New York (1950)
Werts, C.E., Linn, R.L.: Path analysis: psychological examples. ETS Res. Bull. Ser. 2, 1–49 (1969)
Westland, J.C.: Lower bounds on sample size in structural equation modeling. Electron. Commer. Res. Appl. 9, 476–487 (2010)
Wheaton, B.: Models for the stress-buffering functions of coping resources. J. Health Soc. Behav. 26, 352–364 (1985)
Wheaton, B.: Assessment of fit in overidentified models with latent variables. In: Long, J.S. (ed.) Common Problems/Poor Solutions: Avoiding Error in Quantitative Research. Sage Publications, Beverly Hills (1988)
Wiley, D.E.: The identification problem for structural equation models with unmeasured variables. In: Goldberger, A.S., Duncan, O.D. (eds.) Structural Equation Models in the Social Sciences, pp. 69–83. Academic Press, New York (1973)
Wilks, S.S.: Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution. Ann. Math. Stat. 17, 257–281 (1946)
Willett, J.B., Sayer, A.G.: Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychol. Bull. 116, 363–381 (1994)
Winship, C., Mare, R.D.: Structural equations and path analysis for discrete data. Am. J. Sociol. 89, 54–110 (1983)
Wold, H.: Causal inferences from observational data: a review of end and means. J. R. Stat. Soc. A 119, 28–61 (1956)
Wothke, W.: Nonpositive definite matrices in structural modeling. In: Bollen, K.A., Long, J.S. (eds.) Testing Structural Equation Models, pp. 256–293. Sage Publications, Newbury Park (1993)
Wright, S.: The relative importance of heredity and environment in determining the piebald pattern of guinea-pigs. Proc. Natl. Acad. Sci. 6, 320–332 (1920)
Wright, S.: Correlation and causation. J. Agric. Res. 20, 557–585 (1921)
Wright, S.: Path coefficients and path regression: alternative or complementary concepts. Biometrics 16, 189–202 (1960a)
Wright, S.: The treatment of reciprocal interactions with or without lag, in path analysis. Biometrics 16, 423–445 (1960b)
Yang, M., Dunson, D.B.: Bayesian semiparametric structural equation models with latent variables. Psychometrika 75, 675–693 (2010)
Yang-Wallentin, F., Schmidt, P., Davidov, E., Bamberg, S.: Is there any interaction effect between intention and perceived behavioral control? Methods Psychol. Res. Online 8, 127–157 (2004)
Yuan, K.-H., Bentler, P.M.: Normal theory based test statistics in structural equation modeling. Br. J. Math. Stat. Psychol. 51, 289–309 (1998)
Yuan, K.-H., Bentler, P.M.: A unified approach to multi-group structural equation modeling with nonstandard samples. In: Marcoulides, G.A., Schumacker, R.E. (eds.) Advanced Structural Equation Modeling: New Developments and Techniques, pp. 35–56. Erlbaum, Mahwah (2001)
Yuan, K.-H., Bentler, P.M.: Structural equation modeling. In: Rao, C.R., Sinharay, S. (eds.) Handbook of Statistics, pp. 297–358. North-Holland, Amsterdam (2007)
Yuan, K.-H., Chan, W.: Measurement invariance via multi-group SEM: issues and solutions with Chi-square-difference tests. Psychol. Methods 21, 405–426 (2016)
Yuan, K.-H., Chan, W., Marcoulides, G.A., Bentler, P.M.: Assessing structural equation models by equivalence testing with adjusted fit indexes. Struct. Equ. Model. 23, 319–330 (2016)
Yung, Y.-F., Bentler, P.M.: On added information for ML factor analysis with mean and covariance structures. J. Educ. Behav. Stat. 24, 1–20 (1986)