Tổng quan về những phát triển gần đây trong việc giải thích và dự đoán động học nội bộ nhanh của protein

European Biophysics Journal - Tập 36 - Trang 985-993 - 2007
Gabrielle Nodet1, Daniel Abergel1
1Département de chimie, Ecole Normale Supérieure, Paris Cedex 05, France

Tóm tắt

Trong những thập kỷ qua, phổ NMR đã trở thành một công cụ độc đáo cho việc nghiên cứu động học protein. Thực tế, các nghiên cứu về độ thư giãn trên các protein được đánh dấu đồng vị có thể cung cấp thông tin về chuyển động tổng thể cũng như động học nội bộ nhanh, dưới một nan giây. Do đó, việc giải thích và dự đoán tỷ lệ độ thư giãn spin trong các protein là những vấn đề quan trọng đã thúc đẩy nhiều phát triển lý thuyết và phương pháp, bao gồm việc mô tả động học tổng thể và mối liên hệ có thể của nó với tính di động nội bộ, giới thiệu các mô hình động học nội bộ, xác định các hàm tương quan từ dữ liệu thực nghiệm, và mối quan hệ giữa độ thư giãn và các đại lượng nhiệt động học. Một cái nhìn tổng quan về những phát triển gần đây đã được chứng minh là hữu ích trong lĩnh vực này sẽ được trình bày.

Từ khóa

#Động học protein #phổ NMR #độ thư giãn spin #mô hình động học nội bộ #hàm tương quan #nhiệt động học

Tài liệu tham khảo

Abergel D, Bodenhausen G (2004) A simple model for NMR relaxation in the presence of internal motions with dynamical coupling. J Chem Phys 121:761 Abergel D, Bodenhausen G (2005) Predicting internal protein dynamics from structures using coupled networks of hindered rotators. J Chem Phys 123:204901 Abragam A (1961) Principles of nuclear magnetism. Clarendon Press, Oxford Akke M, Brüschweiler R, Arthur G Palmer I (1993) NMR order parameters and free energy: an analytical approach and its application to cooperative ca2+ binding by calbindin d 9k . J Am Chem Soc 115:9832–9833 Bernado P, de la Torre JG, Pons M (2002) Interpretation of 15N NMR relaxation of globular proteins using hydrodynamic calculations with hydroNMR. J Biomol NMR 23:139–150 Blackledge M, Cordier F, Dosset P, Marion D (1998) Precision and uncertainty in the characterization of anisotropic rotational diffusion by 15N relaxation. J Am Chem Soc 120:4538–4539 Bremi T, Brüschweiler R (1997) Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation. J Am Chem Soc 119:6672–6673 Bremi T, Brüschweiler R, Ernst R (1997) A protocol for the interpretation of side-chain dynamics based on NMR relaxation: Application to phenylalanines in antamanide. J Am Chem Soc 119:4272 Brink D, Satchler G (1968) Angular momentum. Clarendon Press, Oxford Brüschweiler R, Liao X, Wright P (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268:886–889 Brüschweiler R, Case DA (1994) Collective NMR relaxation model applied to protein dynamics. Phys Rev Lett 72:940–943 Buck M, Boyd J, Redfield C, MacKenzie D, Jeenes D, Archer D, Dobson C (1995) Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry 34:4041–4055 Carlomagno T, Maurer M, Hennig M, Griesinger C (2000) Ubiquitin backbone motion studied via NHN-C′ Cα dipolar-dipolar and C′–C′Cα/ NHN CSA-dipolar cross-correlation relaxation. J Am Chem Soc 122:5105–5113 Case D (2002) Molecular dynamics and NMR spin relaxation in proteins. Acc Chem Res 35:325–331 Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy. Academic, New York Chandrashekar I, Clore GM, Szabo A, Gronenborn A, Brooks B (1992) A 500 ps molecular dynamics simulation study of interleukin-1 beta in water. correlation with nuclear magnetic resonance spectroscopy and crystallography. J Mol Biol 226:239–250 Chatfield D, Szabo A, Brooks B (1998) Molecular dynamics of staphylococcal nuclease: comparison of simulation with 15N and 13C NMR relaxation data. J Am Chem Soc 120:5301–5311 Clore GM, Driscoll PC, Wingfield P, Gronenborn AM (1990a) Analysis of the backbone dynamics of interleukine-1 beta using two-dimensional inverse detected heteronuclear nitrogen-15-proton NMR spectroscopy. Biochemistry 29:7387–7401 Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990b) Deviations from the simple two-parameter model-free approach of the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J Am Chem Soc 112:4989–4991 Coffey WT, Kalmykov YP, Waldron JT (1996) The Langevin equation. World Scientific, Singapore Daragan VA, Mayo KH (1997) Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Progr NMR Spectrosc 31:63–105 de la Torre JG, Bloomfield V (1981) Hydrodynamic properties of complex, rigid, biological macromolecules—theory and applications. Quart Rev Biophys 14:81–139 de la Torre JG, Huertas ML, Carrasco B (2000a) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730 de la Torre JG, Huertas ML, Carrasco B (2000b) HydroNMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J Magn Reson 147:138–146 Delarue M, Duclert-Savatier N, Miclet E, Haouz A, Giganti D, Ouazzani J, Lopes P, Nilges M, Stoven V (2007) Three dimensional structure and implications for the catalytic mechanism of 6-phosphogluconolactonase from trypanosoma brucei. J Mol Biol 366:868–881 Dhulesia A, Abergel D, Bodenhausen G (2007) Networks of coupled rotators: Relationship between structures and internal dynamics in metal-binding proteins. application to apo- and holo-calbindin. J Am Chem Soc 129:4998–5006 Dosset P, Marion D, Blackledge M (2000) Tensor2. Copyright 1999, Institut de Biologie Structurale JP EBEL CEA-CNRS, Laboratoire de Resonance Magnetique nucleaire, Grenoble Edholm O, Blomberg C (1979) Decay of angular-correlation functions by multiple rotational potential diffusion in polymer-chains, with applications to NMR relaxation in paraffin chains of lipid bilayers. Chem Phys 42:449 Favro LD (1960) Theory of the rotational brownian motion of a free rigid body. Phys Rev 119:53 Fischer M, Majumdar A, Zuiderweg E (1998) Protein NMR relaxation: theory, applications and outlook. Prog Nucl Magn Reson 33:207–272 Fushman D, Ohlenschläger O, Rüterjans H (1994) Determination of the backbone mobility of ribonuclease t1 and its 2′ GMP complex using molecular dynamics simulations and NMR relaxation data. J Biomol Struct Dyn 4:61–78 Fushman D, Xu R, Cowburn D (1999) Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in abl sh(32). Biochemistry 38:10225–10230 Goldman M (1984) Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J Magn Reson 60:437–452 Goodman JL, Pagel MD, Stone MJ (2000) Relationships between protein structure and dynamics from a database of NMR-derived backbone order parameters. J Mol Biol 295:963–978 Halle B (2002) Flexibility and packing in proteins. Proc Natl Acad Sci 99:1275–1279 Halle B, Wennerström H (1981) J Chem Phys 75:1928–1943 Huntress WT (1968) Effects of anisotropic molecular rotational diffusion on nuclear magnetic relaxation in liquids. J Chem Phys 48:3524–3533 Idiyatullin D, Daragan V, Mayo K (2004) A simple method to measure (ch2)-C-13 heteronuclear dipolar cross-correlation spectral densities. J Magn Reson 171:4–9 Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106:1672–1699 Jarymowicz VA, Stone M (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106:1624–1671 Kateb F, Abergel D, Blouquit Y, Duchambon P, Craescu C, Bodenhausen G (2006) Slow backbone dynamics of the C-terminal fragment of human centrin 2 in complex with a target peptide probed by cross-correlated relaxation in multiple-quantum NMR spectroscopy. Biochemistry 45:15011–15019 Kloiber K, Konrat R (2000) Differential multiple-quantum relaxation arising from cross-correlated time-modulation of isotropic chemical shifts. J Biomol NMR 18:33 Kördel J, Teleman O (1992) Backbone dynamics of calbindin d9k: comparison of molecular dynamics simulations and notrogen-15 NMR relaxation measurements. J Am Chem Soc 114:4934–4936 Korzhnev D, Billeter M, Arseniev A, Orekhov V (2001) NMR studies of brownian tumbling and internal motions in proteins. Prog NMR Spectrosc 38:197–266 Kroenke CD, Loria JP, Lee LK, Rance M, Palmer AG (1998) Longitudinal and transverse 1H–15N dipolar/15N chemical shift anisotropy relaxation interference: Unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J Am Chem Soc 120:7905–7915 Lee LK, Rance M, Chazin WJ, Palmer AG (1997) Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13Cα nuclear spin relaxation. J Biomol NMR 9:287–298 Lenin F, Bremi T, Brutcher B, Ernst R (1997) Anisotropic intramolecular back-bone dynamics of ubiquitin characterized by NMR relaxation and md computer simulation. J Am Chem Soc 120:9870–9879 Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, Chichester Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546 Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559 London R, Avitabile J (1978) Calculated carbon-13 NMR relaxation parameters for a restricted internal diffusionmodel. application to methionine relaxation in dihydrofolate reductase. J Am Chem Soc 100:7159–7165 Mandel AM, Akke M, Palmer III AG (1995) Backbone dynamics of escherichia coli ribonuclease hi: correlations with structure and function in an active enzyme. J Mol Biol 246:144–163 Meirovitch E, Polimeno A, Freed JH (2006) Methyl dynamics in proteins from NMR slowly relaxing local structure spin relaxation analysis: a new perspective. J Phys Chem B 110:20615–20628 Millet O, Loria JP, Kroenke CD, Pons M, Palmer AG (2000) The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J Am Chem Soc 122:2867–2877 Millet O, Muhandiram D, Skrynnikov NR, Kay L (2002) Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labelled and fractionally 2H-enriched proteins in solution. J Am Chem Soc 124:6439–6448 Ming D, Brschweiler R (2004) Prediction of methyl side-chain dynamics in proteins. J Biomol NMR 29:363–368 Ming D, Brschweiler R (2006) Reorientational contact-weighted elastic network model for the prediction of protein dynamics: comparison with NMR relaxation. Biophys J 90:3382–3388 Palmer AG (2001) Annu Rev Biophys Biomol Struct 30:129 Palmer AG, Case D (1992) Molecular dynamics analysis of NMR relaxation in a zinc-finger peptide. J Am Chem Soc 114:9059–9067 Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Meth Enzymol 339:204–238 Pelupessy P, Chiarparin E, Ghose R, Bodenhausen G (1999a) Efficient determination of angles subtended by Cα – H α and N–HN vectors in proteins via dipole–dipole cross-correlation. J Biomol NMR 13:375–380 Pelupessy P, Chiarparin E, Ghose R, Bodenhausen G (1999b) Simultaneous detection of y and f angles in proteins from measurements of cross-correlated relaxation effects. J Biomol NMR 14:277–280 Pelupessy P, Ravindranathan S, Bodenhausen G (2003) Correlated motions of successive amide N–H bonds in proteins. J Biomol NMR 25:265–280 Perazzolo C, Wist J, Loth K, Poggi L, Homans S, Bodenhausen G (2005) Effects of protein-pheromone complexation on correlated chemical shift modulations. J Biomol NMR 33:233–242 Perrin F (1934) Journal de Physique du Radium 5:497–511 Perrin F (1936) Journal de Physique du Radium 7:1–11 Philippopoulos M, Mandel AM, Palmer AG III, Lim C (1997) Accuracy and precision of NMR relaxation experiments and md simulations for characterizing protein dynamics. Proteins Struct Funct Bioinformatics 28:481–493 Polimeno A, Freed J (1993) Adv Chem Phys 83:89–163 Polimeno A, Freed J (1995) Slow motional ESR in complex fluids—the slowly relaxing local-structure model of solvent cage effects. J Phys Chem 99:10995–11006 Prompers J, Brschweiler R (2002) General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and md simulation. J Am Chem Soc 124:4522–4534 Redfield AG (1965) Adv Magn Reson 1:1–32 Reif B, Diener A, Hennig M, Maurer M, Griesinger C (2000) Cross-correlated relaxation for the measurement of angles between tensorial interactions. J Magn Reson 143:45–68 Reif B, Hennig M, Griesinger C (1997) Direct measurement of angles between bond vectors in high-resolution NMR. Science 276:1230 Ryabov YE, Geraghty C, Varshney A, Fushman D (2006) An efficient computational method for predicting rotational diffusion tensors of globular proteins using an ellipsoid representation. Journal of the American Chemical Society 128:15432–15444 Schmidt JM, Brüschweiler R, Ernst RR, Dunbrack RL, Joseph D, Karplus M (1993) Molecular dynamics simulation of the proline conformational equilibrium and dynamics in antamanide using the charmm force field. J Am Chem Soc 115:8747–8756 Schurr JM, Babcock HP, Fujimoto BS (1994) A test of the model-free formulas—effects of anisotropic rotational diffusion and dimerization. J Magn Reson 105 B:211–224 Schwalbe H, Carlomagno T, Hennig M, Junker J, Reif B, Richter C, Griesinger C (1997) Methods Enzymol 338:35–81 Skrynnikov NR, Millet O, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins 2 spectral density mapping and identification of nanosecond time-scale side-chain motions. J Am Chem Soc 124:6449–6460 Tirion M (1997) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905 Torchia D, Szabo A (1982) Spin-lattice relaxation in solids. J Magn Reson 49:107–121 Tugarinov V, Liang Z, Shapiro YE, Freed JH, Meirovitch E (2001) A structural mode-coupling approach to 15N NMR relaxation in proteins. J Am Chem Soc 123:3055–3063 Tugarinov V, Shapiro YE, Liang Z, Freed JH, Meirovitch E (2002) A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling 15N NMR relaxation. J Mol Biol 315:155 Tugarinov V, Shapiro YE, Liang Z, Freed JH, Meirovitch E (2003) Mode coupling srls versus mode-decoupled model-free N–H bond dynamics: mode-mixing and renormalization. J Phys Chem B 107:9898–9904 Wand J (2001a) Science 293:U1 Wand J (2001b) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 8:926–931 Werbelow L, Grant D (1975) The dipolar orientational correlation function. J Magn Reson 21:369 Wist J, Perazzolo C, Bodenhausen G (2005) Slow motions in nondeuterated proteins: concerted chemical shift modulations of backbone nuclei. Appl Magn Reson 29:251–259 Wittebort R, Szabo A (1978) Theory of NMR relaxation in macromolecules: restricted diffusion and jump models for multiple internal rotations in amino acid side chains. J Chem Phys 69:1722–1736 Wittebort R, Szabo A (1985) Influence of vibrational motion on solid state line shapes and NMR relaxation. J Chem Phys 82:4753–4761 Woessner DE (1962) Spin relaxation processes in a two-proton system undergoing anisotropic reorientation. J Chem Phys 36:1–4 Yang D, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol 263:369–382 Yang D, Mittermaier A, Mok YK, Kay LE (1998) A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J Mol Biol 276:939–954 Zhang L, Brüschweiler R (2002) Contact model for the prediction of NMR N–H order parameters in globular proteins. J Am Chem Soc 276:12654–12655 Zidek L, Novotny MV, Stone MJ (1999) Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol 6:1118–1121