An overview of full-waveform inversion in exploration geophysics

Geophysics - Tập 74 Số 6 - Trang WCC1-WCC26 - 2009
J. Virieux1,2, S. Operto1,2
1Université Joseph Fourier, Laboratoire de Géophysique Interne et Tectonophysique, CNRS, IRD, Grenoble, France. .
2Université Nice-Sophia Antipolis, Géoazur, CNRS, IRD, Observatoire de la Côte d’Azur, Villefranche-sur-mer, France. .

Tóm tắt

Full-waveform inversion (FWI) is a challenging data-fitting procedure based on full-wavefield modeling to extract quantitative information from seismograms. High-resolution imaging at half the propagated wavelength is expected. Recent advances in high-performance computing and multifold/multicomponent wide-aperture and wide-azimuth acquisitions make 3D acoustic FWI feasible today. Key ingredients of FWI are an efficient forward-modeling engine and a local differential approach, in which the gradient and the Hessian operators are efficiently estimated. Local optimization does not, however, prevent convergence of the misfit function toward local minima because of the limited accuracy of the starting model, the lack of low frequencies, the presence of noise, and the approximate modeling of thewave-physics complexity. Different hierarchical multiscale strategies are designed to mitigate the nonlinearity and ill-posedness of FWI by incorporating progressively shorter wavelengths in the parameter space. Synthetic and real-data case studies address reconstructing various parameters, from [Formula: see text] and [Formula: see text] velocities to density, anisotropy, and attenuation. This review attempts to illuminate the state of the art of FWI. Crucial jumps, however, remain necessary to make it as popular as migration techniques. The challenges can be categorized as (1) building accurate starting models with automatic procedures and/or recording low frequencies, (2) defining new minimization criteria to mitigate the sensitivity of FWI to amplitude errors and increasing the robustness of FWI when multiple parameter classes are estimated, and (3) improving computational efficiency by data-compression techniques to make 3D elastic FWI feasible.

Từ khóa


Tài liệu tham khảo

Abubakar, A., W. Hu, T. Habashy, and P. van den Berg, 2009, A finite-difference contrast source inversion algorithm for full-waveform seismic applications: GeophysicsGPYSA70016-8033, this issue.

Akcelik, V., 2002, Multiscale Newton-Krylov methods for inverse acoustic wave propagation: Ph.D. thesis, Carnegie Mellon University.

Aki, K., and P. Richards, 1980, Quantitative seismology: Theory and methods: W.H. Freeman & Co.

Alerini, M., S. Le Bégat, G. Lambaré, and R. Baina, 2002, 2D PP- and PS-stereotomography for a multicomponent datset: 72nd Annual International Meeting, SEG, Expanded Abstracts, 838–841.

10.1190/1.1443888

10.1190/1.1443015

10.1190/1.1443111

Askan, A., 2006, Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures: Ph.D. thesis, Carnegie Mellon University.

10.1785/0120070079

10.1785/0120080138

Barnes, C., and M. Charara, 2008, Full-waveform inversion results when using acoustic approximation instead of elastic medium: 78th Annual International Meeting, SEG, Expanded Abstracts, 1895–1899.

10.1111/j.1365-2478.2008.00702.x

10.1190/1.1441434

10.1111/j.1365-2478.2007.00618.x

10.1190/1.2957948

Ben Hadj Ali, H., S. Operto, J. Virieux, and F. Sourbier, 2008b, 3D frequency-domain full-waveform tomography based on a domain decomposition forward problem: 78th Annual International Meeting, SEG, Expanded Abstracts, 1945–1949.

Ben Hadj Ali, H., S. Operto, J. Virieux, and F. Sourbier, 2009a, Efficient 3D frequency-domain full waveform inversion with phase encoding: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, 5812.

Ben Hadj Ali, H., S. Operto, J. Virieux, and F. Sourbier, 2009b, Three-dimensional frequency-domain full-waveform inversion with phase encoding: 79th Annual International Meeting, SEG, Expanded Abstracts, 2288–2292.

10.1121/1.396537

10.1063/1.526755

10.1016/0165-2125(90)90017-X

10.1046/j.1365-246X.1998.00632.x

10.1190/1.1581072

10.1190/1.1801945

10.1029/2006JB004611

10.1190/1.1442363

10.1190/1.1442748

10.1111/j.1365-246X.2006.03096.x

10.1111/j.1365-246X.2006.03156.x

Brenders, A. J. , and R. G. Pratt, 2007c, Waveform tomography of marine seismic data: What can limited offset offer? 75th Annual International Meeting, SEG, Expanded Abstracts, 3024–3029.

Brossier, R., S. Operto, and J. Virieux, 2009a, Seismic imaging of complex structures by 2D elastic frequency-domain full-waveform inversion: GeophysicsGPYSA70016-8033, this issue.

Brossier, R., S. Operto, and J. Virieux, 2009b, Two-dimensional seismic imaging of the Valhall model from synthetic OBC data by frequency-domain elastic full-waveform inversion: 79th Annual International Meeting, SEG, Expanded Abstracts, 2293–2297.

10.1111/j.1365-246X.2008.03839.x

10.1190/1.2431639

10.1190/1.1443880

10.1111/j.1365-246X.2005.02689.x

10.1190/1.1500393

10.1111/j.1365-246X.1988.tb03879.x

Chapman C., 1985, Journal of Geophysics, 58, 27

Chavent, G., 1974, Identification of parameter distributed systems,inR. Goodson and M. Polis, eds. Identification of function parameters in partial differential equations: American Society of Mechanical EngineersAMDVAS0160-8835, 31–48.

10.1111/j.1365-246X.2007.03429.x

10.1029/2004JB003595

10.1111/j.1365-2478.2008.00735.x

10.1190/1.1440185

Claerbout, J. F. , 1976, Fundamentals of geophysical data processing: McGraw-Hill Book Co., Inc.

10.1190/1.1440298

10.1190/1.1442864

Danecek, P., and G. Seriani, 2008, An efficient parallel Chebyshev pseudo-spectral method for large-scale 3D seismic forward modelling: 70th Conference & Technical Exhibition, EAGE, Extended Abstracts, P046.

10.1007/BF02920068

10.1046/j.1365-246X.2003.01956.x

10.1016/0161-7346(82)90017-7

10.1016/0165-2125(91)90040-U

10.1190/1.1444611

10.1046/j.1365-2478.1997.640298.x

10.1111/j.1365-246X.2006.03120.x

10.1190/1.2950306

Ellefsen, K., 2009, A comparison of phase inversion and traveltime tomography for processing of near-surface refraction traveltimes: GeophysicsGPYSA70016-8033, this issue.

10.1088/0266-5611/24/3/034015

Erlangga, Y. A. , and F. J. Herrmann, 2008, An iterative multilevel method for computing wavefields in frequency-domain seismic inversion: 78th Annual International Meeting, SEG, Expanded Abstracts, 1956–1960.

10.1190/1.2761848

10.1111/j.1365-246X.2008.03923.x

Forgues E., 1997, Journal of Seismic Exploration, 6, 253

10.1029/JZ067i013p05279

10.1190/1.2752744

10.1190/1.2159049

10.1190/1.1442188

10.1190/1.1440899

10.1111/j.1365-246X.2006.03135.x

10.1121/1.400376

10.1098/rsta.1975.0025

Graves R., 1996, Bulletin of the Seismological Society of America, 86, 1091, 10.1785/BSSA0860041091

10.1190/1.1707077

10.1190/1.1598124

Gutenberg, B., 1914, Über erdbenwellen viia. beobachtungen an registrierungen von fernbeben in göttingen und folgerungen über die konstitution des erdkörpers: Nachrichten von der Könglichen Gesellschaft der Wissenschaften zu Göttinge, Mathematisch-Physikalische Klasse, 125–176.

10.1190/1.3112572

Hak, B., and W. Mulder, 2008, Preconditioning for linearized inversion of attenuation and velocity perturbations: 78th Annual International Meeting, SEG, Expanded Abstracts, 2036–2040.

Hansen, C., ed. 1998, Rank-defficient and discrete ill-posed problems — Numerical aspects of linear inversion: Society for Industrial and Applied Mathematics.

Herrmann, F. J. , Y. Erlangga, and T. T. Y. Lin, 2009, Compressive sensing applied to full-wave form inversion: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, S016.

10.1190/1.1444951

10.1029/92JB00235

10.1190/1.3073002

10.1111/j.1365-246X.2004.02289.x

10.1190/1.1442399

10.1046/j.1365-246X.2002.01768.x

10.1111/j.1365-246X.2007.03691.x

Jaiswal, P., C. Zelt, R. Dasgupta, and K. Nath, 2009, Seismic imaging of the Naga thrust using multiscale waveform inversion: GeophysicsGPYSA70016-8033, this issue.

10.1190/1.1442719

10.1029/92GL02781

10.1190/1.1443618

10.1111/j.1365-246X.1992.tb04637.x

10.1190/1.1443979

10.1046/j.1365-246X.1999.00829.x

Kamei, R., and R. G. Pratt, 2008, Waveform tomography strategies for imaging attenuation structure for cross-hole data: 70th Conference & Technical Exhibition, EAGE, Extended Abstracts, F019.

Kennett, B. L. N. , 1983, Seismic wave propagation in stratified media: Cambridge University Press.

Klem-Musatov K. D., 1985, Journal of Geophysics, 57, 90

Kolb P., F. Collino, and P. Lailly, 1986, Prestack inversion of 1-D medium: Proceedings of the IEEE, 498–508.

10.1080/14786435608238144

Komatitsch D., 1998, Bulletin of the Seismological Society of America, 88, 368, 10.1785/BSSA0880020368

10.1029/91JB02278

10.1190/1.1443083

Krebs, J., J. Anderson, D. Hinkley, R. Neelamani, A. Baumstein, M. D. Lacasse, and S. Lee, 2009, Fast full-wavefield seismic inversion using encoded sources: GeophysicsGPYSA70016-8033, this issue.

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations: Conference on Inverse Scattering, Theory and Application, Society for Industrial and Applied Mathematics, Expanded Abstracts, 206–220.

10.1190/1.2952039

Lambaré, G., and M. Alérini, 2005, Semi-automatic picking PP-PS stereotomography: Application to the synthetic Valhall data set: 75th Annual International Meeting, SEG, Expanded Abstracts, 943–946.

10.1190/1.1598128

10.1190/1.1443328

10.1190/1.2919584

10.1111/j.1365-2478.2005.00501.x

10.1190/1.1635054

Lehmann, I., 1936, P′ : Publications du Bureau Central Séismologique International, A14, 87–115.

10.1190/1.1442422

10.1111/j.1365-2478.1995.tb00295.x

10.1190/1.1444060

Lions, J., 1972, Nonhomogeneous boundary value problems and applications: Springer-Verlag, Berlin.

10.1007/BF00874575

10.1190/1.3124932

10.1111/j.1365-2478.2007.00680.x

Malinowsky, M., A. Ribodetti, and S. Operto, 2007, Multiparameter full-waveform inversion for velocity and attenuation — Refining the imaging of a sedimentary basin: 69th Conference & Technical Exhibition, EAGE, Extended Abstracts, P276.

10.1190/1.1441689

10.1029/JB092iB01p00407

Menke, W., 1984, Geophysical data analysis: Discrete inverse theory: Academic Press, Inc.

10.1190/1.1442364

10.1190/1.2194522

10.1785/0120020066

10.1126/science.1092485

10.1190/1.1442384

10.1190/1.1442510

10.1029/94JB03097

Mulder, W. A. , and B. Hak, 2009, Simultaneous imaging of velocity and attenuation perturbations from seismic data is nearly impossible: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, S043.

10.1111/j.1365-246X.2006.03262.x

10.2307/2006193

10.1007/b98874

Nolet, G., 1987, Seismic tomography with applications in global seismology and exploration geophysics: D. Reidel Publ. Co.

10.1144/GSL.JGS.1906.062.01-04.21

10.1190/1.1598129

10.1111/j.1365-2478.2004.00452.x

10.1190/1.2759835

10.1029/2005JB003835

10.1190/1.3157243

10.1190/1.1444814

10.1145/355993.356000

10.1145/355984.355989

10.1190/1.1442836

10.1111/j.1365-246X.2006.02978.x

10.1190/1.2738849

Plessix, R.E., 2009, 3D frequency-domain full-waveform inversion with an iterative solver: GeophysicsGPYSA70016-8033, this issue.

Polak E., 1969, Revue Française d’Informatique et de Recherche Opérationnelle, 16, 35

10.1111/j.1365-2478.1990.tb01847.x

10.1190/1.1444597

10.1190/1.1443033

Pratt, R. G. , F. Hou, K. Bauer, and M. Weber, 2005, Waveform tomography images of velocity and inelastic attenuation from the Mallik 2002 crosshole seismic surveys,inS. R. Dallimore, and T. S. Collett, eds. Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada: Geological Survey of Canada.

Pratt, R. G. , R. E. Plessix, and W. A. Mulder, 2001, Seismic waveform tomography: The effect of layering and anisotropy: 63rd Conference & Technical Exhibition, EAGE, Extended Abstracts, P092.

10.1046/j.1365-246X.1998.00498.x

Pratt, R. G. , L. Sirgue, B. Hornby, and J. Wolfe, 2008, Cross-well waveform tomography in fine-layered sediments — Meeting the challenges of anisotropy: 70th Conference & Technical Exhibition, EAGE, Extended Abstracts, F020.

10.1111/j.1365-246X.1996.tb07023.x

Pratt, R. G. , and W. Symes, 2002, Semblance and differential semblance optimisation for waveform tomography: A frequency domain implementation: Sub-basalt imaging conference, Expanded Abstracts, 183–184.

10.1111/j.1365-2478.1990.tb01846.x

Press, W. H. , B. P. Flannery, S. A. Teukolsky, and W. T. Veltering, 1986, Numerical recipes: The art of scientific computing: Cambridge University Press.

Prieux, V., S. Operto, R. Brossier, and J. Virieux, 2009, Application of acoustic full waveform inversion to the synthetic Valhall model: 77th Annual International Meeting, SEG, Expanded Abstracts, 2268–2272.

10.1111/j.1365-2478.2007.00619.x

10.1111/j.1365-246X.2004.02442.x

10.1046/j.1365-246x.2000.00015.x

Ribodetti, A., and J. Virieux, 1996, Asymptotic theory for imaging the attenuation factors Qp and Qs : Conference of Aixe-les-Bains, INRIA — French National Institute for Research in Computer Science and Control, Expanded Abstracts, 334–353.

10.1190/1.2231109

10.1016/j.jcp.2007.03.033

10.1190/1.2755959

10.1190/1.1444737

Saad, Y., 2003, Iterative methods for sparse linear systems, 2nd ed.: Society for Industrial and Applied Mathematics.

10.1111/j.1365-246X.1992.tb00100.x

10.1029/2000RG000089

10.1111/j.1365-2478.1991.tb00341.x

10.1088/0266-5611/6/1/011

Scales, J. A. , and M. L. Smith, 1994, Introductory geophysical inverse theory: Samizdat Press.

10.1111/j.1365-2478.2008.00692.x

Sen, M. K. , and P. L. Stoffa, 1995, Global optimization methods in geophysical inversion: Elsevier Science Publ. Co., Inc.

10.1190/1.2210969

10.1190/1.2399450

10.1190/1.2953978

10.1111/j.1365-246X.2008.03768.x

10.1111/j.1365-246X.2009.04102.x

10.1046/j.1365-2478.2001.00279.x

10.1190/1.2194523

10.1111/j.1365-2478.2007.00617.x

10.1190/1.1487129

10.1046/j.1365-246X.2002.01645.x

Sirgue, L., 2003, Inversion de la forme d’onde dans le domaine fréquentiel de données sismiques grand offset: Ph.D. thesis, Université Paris and Queen’s University.

Sirgue, L., 2006, The importance of low frequency and large offset in waveform inversion: 68th Conference & Technical Exhibition, EAGE, Extended Abstracts, A037.

Sirgue, L., O. I. Barkved, J. P. V. Gestel, O. J. Askim, and J. H. Kommedal, 2009, 2D waveform inversion on Valhall wide-azimuth OBS: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, U038.

Sirgue, L., J. Etgen, and U. Albertin, 2007, 3D full waveform inversion: Wide versus narrow azimuth acquisitions: 77th Annual International Meeting, SEG, Expanded Abstracts, 1760–1764.

Sirgue, L., J. T. Etgen, and U. Albertin, 2008, 3D frequency domain waveform inversion using time domain finite difference methods: 70th Conference & Technical Exhibition, EAGE, Extended Abstracts, F022.

10.1190/1.1649391

Smithyman, B. R. , R. G. Pratt, J. G. Hayles, and R. J. Wittebolle, 2008, Near surface void detection using seismic Q-factor waveform tomography: 70th Annual International Meeting, EAGE, Expanded Abstracts, F018.

10.1190/1.1442742

Song Z., 1995, Geophysics, 60, 786

Sourbier, F., A. Haiddar, L. Giraud, S. Operto, and J. Virieux, 2008, Frequency-domain full-waveform modeling using a hybrid direct-iterative solver based on a parallel domain decomposition method: A tool for 3D full-waveform inversion? 78th Annual International Meeting, SEG, Expanded Abstracts, 2147–2151.

10.1016/j.cageo.2008.04.013

10.1016/j.cageo.2008.04.012

10.1190/1.1444472

10.1190/1.1440826

Taillandier, C., M. Noble, H. Chauris, and H. Calandra, 2009, First-arrival travel time tomography based on the adjoint state method: GeophysicsGPYSA70016-8033, this issue.

10.1256/smsqj.47811

10.1190/1.1441754

10.1190/1.1442046

Tarantola, A., 1987, Inverse problem theory: Methods for data fitting and model parameter estimation: Elsevier Science Publ. Co., Inc.

10.1190/1.1444518

10.1190/1.1444513

10.1190/1.1442051

Toksöz, M. N. , and D. H. Johnston, 1981, Seismic wave attenuation: SEG.

10.1111/j.1365-246X.2004.02453.x

Tsvankin, I., 2001, Seismic signature and analysis of reflection data in anisotropic media: Elsevier Scientific Publ. Co., Inc.

10.2528/PIER01061103

10.1190/1.2952623

Vigh, D., and E. W. Starr, 2008b, Comparisons for waveform inversion, time domain or frequency domain? 78th Annual International Meeting, SEG, Expanded Abstracts, 1890–1894.

10.1190/1.3112760

10.1190/1.1442147

10.1190/1.3124928

Vogel, C., 2002, Computational methods for inverse problems: Society of Industrial and Applied Mathematics.

10.1137/0917016

10.1029/2008JB005916

Warner, M., I. Stekl, and A. Umpleby, 2007, Full wavefield seismic tomography — Iterative forward modeling in 3D: 69th Conference & Technical Exhibition, EAGE, Extended Abstracts, C025.

Warner, M., I. Stekl, and A. Umpleby, 2008, 3D wavefield tomography: synthetic and field data examples: 78th Annual International Meeting, SEG, Expanded Abstracts, 3330–3334.

10.1190/1.1443032

10.1029/JB089iB07p05953

10.1190/1.1443179

10.1190/1.2969907

10.1007/PL00012548

10.1190/1.1441934

10.1190/1.1442237

Yilmaz, O., 2001, Seismic data analysis: processing, inversion and interpretation of seismic data: SEG.

10.1029/97JB03536

Zelt, C. A. , R. G. Pratt, A. J. Brenders, S. Hanson-Hedgecock, and J. A. Hole, 2005, Advancements in long-offset seismic imaging: A blind test of traveltime and waveform tomography: Eos, Transactions of the American Geophysical UnionTAGUAT0002-8606, 86, Abstract S52A-04.

10.1190/1.1598125