An overview of full-waveform inversion in exploration geophysics
Tóm tắt
Full-waveform inversion (FWI) is a challenging data-fitting procedure based on full-wavefield modeling to extract quantitative information from seismograms. High-resolution imaging at half the propagated wavelength is expected. Recent advances in high-performance computing and multifold/multicomponent wide-aperture and wide-azimuth acquisitions make 3D acoustic FWI feasible today. Key ingredients of FWI are an efficient forward-modeling engine and a local differential approach, in which the gradient and the Hessian operators are efficiently estimated. Local optimization does not, however, prevent convergence of the misfit function toward local minima because of the limited accuracy of the starting model, the lack of low frequencies, the presence of noise, and the approximate modeling of thewave-physics complexity. Different hierarchical multiscale strategies are designed to mitigate the nonlinearity and ill-posedness of FWI by incorporating progressively shorter wavelengths in the parameter space. Synthetic and real-data case studies address reconstructing various parameters, from [Formula: see text] and [Formula: see text] velocities to density, anisotropy, and attenuation. This review attempts to illuminate the state of the art of FWI. Crucial jumps, however, remain necessary to make it as popular as migration techniques. The challenges can be categorized as (1) building accurate starting models with automatic procedures and/or recording low frequencies, (2) defining new minimization criteria to mitigate the sensitivity of FWI to amplitude errors and increasing the robustness of FWI when multiple parameter classes are estimated, and (3) improving computational efficiency by data-compression techniques to make 3D elastic FWI feasible.
Từ khóa
Tài liệu tham khảo
Abubakar, A., W. Hu, T. Habashy, and P. van den Berg, 2009, A finite-difference contrast source inversion algorithm for full-waveform seismic applications: GeophysicsGPYSA70016-8033, this issue.
Akcelik, V., 2002, Multiscale Newton-Krylov methods for inverse acoustic wave propagation: Ph.D. thesis, Carnegie Mellon University.
Aki, K., and P. Richards, 1980, Quantitative seismology: Theory and methods: W.H. Freeman & Co.
Alerini, M., S. Le Bégat, G. Lambaré, and R. Baina, 2002, 2D PP- and PS-stereotomography for a multicomponent datset: 72nd Annual International Meeting, SEG, Expanded Abstracts, 838–841.
Askan, A., 2006, Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures: Ph.D. thesis, Carnegie Mellon University.
Barnes, C., and M. Charara, 2008, Full-waveform inversion results when using acoustic approximation instead of elastic medium: 78th Annual International Meeting, SEG, Expanded Abstracts, 1895–1899.
Ben Hadj Ali, H., S. Operto, J. Virieux, and F. Sourbier, 2008b, 3D frequency-domain full-waveform tomography based on a domain decomposition forward problem: 78th Annual International Meeting, SEG, Expanded Abstracts, 1945–1949.
Ben Hadj Ali, H., S. Operto, J. Virieux, and F. Sourbier, 2009a, Efficient 3D frequency-domain full waveform inversion with phase encoding: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, 5812.
Ben Hadj Ali, H., S. Operto, J. Virieux, and F. Sourbier, 2009b, Three-dimensional frequency-domain full-waveform inversion with phase encoding: 79th Annual International Meeting, SEG, Expanded Abstracts, 2288–2292.
Brenders, A. J. , and R. G. Pratt, 2007c, Waveform tomography of marine seismic data: What can limited offset offer? 75th Annual International Meeting, SEG, Expanded Abstracts, 3024–3029.
Brossier, R., S. Operto, and J. Virieux, 2009a, Seismic imaging of complex structures by 2D elastic frequency-domain full-waveform inversion: GeophysicsGPYSA70016-8033, this issue.
Brossier, R., S. Operto, and J. Virieux, 2009b, Two-dimensional seismic imaging of the Valhall model from synthetic OBC data by frequency-domain elastic full-waveform inversion: 79th Annual International Meeting, SEG, Expanded Abstracts, 2293–2297.
Chapman C., 1985, Journal of Geophysics, 58, 27
Chavent, G., 1974, Identification of parameter distributed systems,inR. Goodson and M. Polis, eds. Identification of function parameters in partial differential equations: American Society of Mechanical EngineersAMDVAS0160-8835, 31–48.
Claerbout, J. F. , 1976, Fundamentals of geophysical data processing: McGraw-Hill Book Co., Inc.
Danecek, P., and G. Seriani, 2008, An efficient parallel Chebyshev pseudo-spectral method for large-scale 3D seismic forward modelling: 70th Conference & Technical Exhibition, EAGE, Extended Abstracts, P046.
Ellefsen, K., 2009, A comparison of phase inversion and traveltime tomography for processing of near-surface refraction traveltimes: GeophysicsGPYSA70016-8033, this issue.
Erlangga, Y. A. , and F. J. Herrmann, 2008, An iterative multilevel method for computing wavefields in frequency-domain seismic inversion: 78th Annual International Meeting, SEG, Expanded Abstracts, 1956–1960.
Forgues E., 1997, Journal of Seismic Exploration, 6, 253
Gutenberg, B., 1914, Über erdbenwellen viia. beobachtungen an registrierungen von fernbeben in göttingen und folgerungen über die konstitution des erdkörpers: Nachrichten von der Könglichen Gesellschaft der Wissenschaften zu Göttinge, Mathematisch-Physikalische Klasse, 125–176.
Hak, B., and W. Mulder, 2008, Preconditioning for linearized inversion of attenuation and velocity perturbations: 78th Annual International Meeting, SEG, Expanded Abstracts, 2036–2040.
Hansen, C., ed. 1998, Rank-defficient and discrete ill-posed problems — Numerical aspects of linear inversion: Society for Industrial and Applied Mathematics.
Herrmann, F. J. , Y. Erlangga, and T. T. Y. Lin, 2009, Compressive sensing applied to full-wave form inversion: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, S016.
Jaiswal, P., C. Zelt, R. Dasgupta, and K. Nath, 2009, Seismic imaging of the Naga thrust using multiscale waveform inversion: GeophysicsGPYSA70016-8033, this issue.
Kamei, R., and R. G. Pratt, 2008, Waveform tomography strategies for imaging attenuation structure for cross-hole data: 70th Conference & Technical Exhibition, EAGE, Extended Abstracts, F019.
Kennett, B. L. N. , 1983, Seismic wave propagation in stratified media: Cambridge University Press.
Klem-Musatov K. D., 1985, Journal of Geophysics, 57, 90
Kolb P., F. Collino, and P. Lailly, 1986, Prestack inversion of 1-D medium: Proceedings of the IEEE, 498–508.
Komatitsch D., 1998, Bulletin of the Seismological Society of America, 88, 368, 10.1785/BSSA0880020368
Krebs, J., J. Anderson, D. Hinkley, R. Neelamani, A. Baumstein, M. D. Lacasse, and S. Lee, 2009, Fast full-wavefield seismic inversion using encoded sources: GeophysicsGPYSA70016-8033, this issue.
Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations: Conference on Inverse Scattering, Theory and Application, Society for Industrial and Applied Mathematics, Expanded Abstracts, 206–220.
Lambaré, G., and M. Alérini, 2005, Semi-automatic picking PP-PS stereotomography: Application to the synthetic Valhall data set: 75th Annual International Meeting, SEG, Expanded Abstracts, 943–946.
Lehmann, I., 1936, P′ : Publications du Bureau Central Séismologique International, A14, 87–115.
Malinowsky, M., A. Ribodetti, and S. Operto, 2007, Multiparameter full-waveform inversion for velocity and attenuation — Refining the imaging of a sedimentary basin: 69th Conference & Technical Exhibition, EAGE, Extended Abstracts, P276.
Menke, W., 1984, Geophysical data analysis: Discrete inverse theory: Academic Press, Inc.
Mulder, W. A. , and B. Hak, 2009, Simultaneous imaging of velocity and attenuation perturbations from seismic data is nearly impossible: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, S043.
Nolet, G., 1987, Seismic tomography with applications in global seismology and exploration geophysics: D. Reidel Publ. Co.
Plessix, R.E., 2009, 3D frequency-domain full-waveform inversion with an iterative solver: GeophysicsGPYSA70016-8033, this issue.
Polak E., 1969, Revue Française d’Informatique et de Recherche Opérationnelle, 16, 35
Pratt, R. G. , F. Hou, K. Bauer, and M. Weber, 2005, Waveform tomography images of velocity and inelastic attenuation from the Mallik 2002 crosshole seismic surveys,inS. R. Dallimore, and T. S. Collett, eds. Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada: Geological Survey of Canada.
Pratt, R. G. , R. E. Plessix, and W. A. Mulder, 2001, Seismic waveform tomography: The effect of layering and anisotropy: 63rd Conference & Technical Exhibition, EAGE, Extended Abstracts, P092.
Pratt, R. G. , L. Sirgue, B. Hornby, and J. Wolfe, 2008, Cross-well waveform tomography in fine-layered sediments — Meeting the challenges of anisotropy: 70th Conference & Technical Exhibition, EAGE, Extended Abstracts, F020.
Pratt, R. G. , and W. Symes, 2002, Semblance and differential semblance optimisation for waveform tomography: A frequency domain implementation: Sub-basalt imaging conference, Expanded Abstracts, 183–184.
Press, W. H. , B. P. Flannery, S. A. Teukolsky, and W. T. Veltering, 1986, Numerical recipes: The art of scientific computing: Cambridge University Press.
Prieux, V., S. Operto, R. Brossier, and J. Virieux, 2009, Application of acoustic full waveform inversion to the synthetic Valhall model: 77th Annual International Meeting, SEG, Expanded Abstracts, 2268–2272.
Ribodetti, A., and J. Virieux, 1996, Asymptotic theory for imaging the attenuation factors Qp and Qs : Conference of Aixe-les-Bains, INRIA — French National Institute for Research in Computer Science and Control, Expanded Abstracts, 334–353.
Saad, Y., 2003, Iterative methods for sparse linear systems, 2nd ed.: Society for Industrial and Applied Mathematics.
Scales, J. A. , and M. L. Smith, 1994, Introductory geophysical inverse theory: Samizdat Press.
Sen, M. K. , and P. L. Stoffa, 1995, Global optimization methods in geophysical inversion: Elsevier Science Publ. Co., Inc.
Sirgue, L., 2003, Inversion de la forme d’onde dans le domaine fréquentiel de données sismiques grand offset: Ph.D. thesis, Université Paris and Queen’s University.
Sirgue, L., 2006, The importance of low frequency and large offset in waveform inversion: 68th Conference & Technical Exhibition, EAGE, Extended Abstracts, A037.
Sirgue, L., O. I. Barkved, J. P. V. Gestel, O. J. Askim, and J. H. Kommedal, 2009, 2D waveform inversion on Valhall wide-azimuth OBS: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, U038.
Sirgue, L., J. Etgen, and U. Albertin, 2007, 3D full waveform inversion: Wide versus narrow azimuth acquisitions: 77th Annual International Meeting, SEG, Expanded Abstracts, 1760–1764.
Sirgue, L., J. T. Etgen, and U. Albertin, 2008, 3D frequency domain waveform inversion using time domain finite difference methods: 70th Conference & Technical Exhibition, EAGE, Extended Abstracts, F022.
Smithyman, B. R. , R. G. Pratt, J. G. Hayles, and R. J. Wittebolle, 2008, Near surface void detection using seismic Q-factor waveform tomography: 70th Annual International Meeting, EAGE, Expanded Abstracts, F018.
Song Z., 1995, Geophysics, 60, 786
Sourbier, F., A. Haiddar, L. Giraud, S. Operto, and J. Virieux, 2008, Frequency-domain full-waveform modeling using a hybrid direct-iterative solver based on a parallel domain decomposition method: A tool for 3D full-waveform inversion? 78th Annual International Meeting, SEG, Expanded Abstracts, 2147–2151.
Taillandier, C., M. Noble, H. Chauris, and H. Calandra, 2009, First-arrival travel time tomography based on the adjoint state method: GeophysicsGPYSA70016-8033, this issue.
Tarantola, A., 1987, Inverse problem theory: Methods for data fitting and model parameter estimation: Elsevier Science Publ. Co., Inc.
Toksöz, M. N. , and D. H. Johnston, 1981, Seismic wave attenuation: SEG.
Tsvankin, I., 2001, Seismic signature and analysis of reflection data in anisotropic media: Elsevier Scientific Publ. Co., Inc.
Vigh, D., and E. W. Starr, 2008b, Comparisons for waveform inversion, time domain or frequency domain? 78th Annual International Meeting, SEG, Expanded Abstracts, 1890–1894.
Vogel, C., 2002, Computational methods for inverse problems: Society of Industrial and Applied Mathematics.
Warner, M., I. Stekl, and A. Umpleby, 2007, Full wavefield seismic tomography — Iterative forward modeling in 3D: 69th Conference & Technical Exhibition, EAGE, Extended Abstracts, C025.
Warner, M., I. Stekl, and A. Umpleby, 2008, 3D wavefield tomography: synthetic and field data examples: 78th Annual International Meeting, SEG, Expanded Abstracts, 3330–3334.
Yilmaz, O., 2001, Seismic data analysis: processing, inversion and interpretation of seismic data: SEG.
Zelt, C. A. , R. G. Pratt, A. J. Brenders, S. Hanson-Hedgecock, and J. A. Hole, 2005, Advancements in long-offset seismic imaging: A blind test of traveltime and waveform tomography: Eos, Transactions of the American Geophysical UnionTAGUAT0002-8606, 86, Abstract S52A-04.