Tổng quan về sự suy giảm trong pin nhiên liệu oxit rắn - nguồn năng lượng sạch tiềm năng

Springer Science and Business Media LLC - Tập 24 - Trang 1239-1270 - 2020
I. Sreedhar1, Bhawana Agarwal1, Priyanka Goyal1, Ankita Agarwal1
1Department of Chemical Engineering, Hyderabad, India

Tóm tắt

Pin nhiên liệu oxit rắn (SOFC) đã nổi lên như một thiết bị phát điện tiềm năng, cực kỳ hiệu quả, dựa vào năng lượng sinh học và gây ra tác hại không đáng kể cho môi trường. Sự thương mại hóa thiết bị này sẽ mở ra một cuộc cách mạng mới trong lĩnh vực thiết bị điện tử và năng lượng. Hiệu suất của SOFC phụ thuộc vào sự hoạt động hiệu quả của các thành phần chính như anode, cathode, điện phân, liên kết và keo dán. Cơ chế hoạt động của SOFC, động học và nhiệt động lực học liên quan, cũng như thành phần của nhiên liệu sử dụng là những biến số quan trọng khác ảnh hưởng đến hiệu suất của SOFC. Vấn đề nghiêm trọng mà các thiết bị này gặp phải là sự suy giảm của các thành phần ở nhiệt độ cao do cả yếu tố nội tại và ngoại tại. Nhiều nhà nghiên cứu đã cố gắng giải quyết vấn đề suy giảm này. Mặc dù có rất nhiều bài báo và đánh giá về sự ăn mòn, nhưng rất ít báo cáo tổng hợp được công bố. Trong bài đánh giá này, các khía cạnh khác nhau của sự suy giảm được đề cập bao gồm cơ chế, biện pháp khắc phục và các giải pháp thay thế được đề xuất bởi nhiều nhà nghiên cứu. Đây là một bài đánh giá toàn diện về sự suy giảm trong SOFC, bao gồm những tiến bộ mới nhất trong nghiên cứu về sự suy giảm và các biện pháp giảm thiểu.

Từ khóa

#pin nhiên liệu oxit rắn #hiệu suất #suy giảm #cơ chế hoạt động #biện pháp giảm thiểu

Tài liệu tham khảo

Singhal SC (2000) Recent advances in solid oxide fuel cell technology. Solid State Ionics 135:305–313 Minh NQ (2004) Solid oxide fuel cell technology—features and applications. Solid State Ionics 174:271–277 Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energ Rev 6:433–455 Kim SJ, Choi MB, Park M et al (2017) Acceleration tests: degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures. J Power Sources 360:284–293 Liu L, Kim GY, Chandra A (2012) Modeling of Ni-CGO anode in a solid oxide fuel cell deposited by spray pyrolysis. J Power Sources 210:129–137 Jiang SP (2003) Sintering behavior of Ni/Y2O3-ZrO2cermet electrodes of solid oxide fuel cells. J Mater Sci 38:3775–3782 Faes A, Hessler-Wyser A, Presvytes D et al (2009) Nickel-zirconia anode degradation and triple phase boundary quantification from microstructural analysis. Fuel Cells 9:841–851 Tanasini P, Cannarozzo M, Costamagna P et al (2009) Experimental and theoretical investigation of degradation mechanisms by particle coarsening in sofc electrodes. Fuel Cells 9:740–752 Kennouche D, Chen-Wiegart YK, Cronin JS et al (2013) Three-dimensional microstructural evolution of Ni- Yttria-stabilized zirconia solid oxide fuel cell anodes at elevated temperatures. J Electrochem Soc 160:F1293–F1304 Khan MZ, Mehran MT, Song R-H, Leed J-W, Seung-Bok Leea T-HL (2018) A simplified approach to predict performance degradation of solid oxide fuel cell anode. J Power Sources 391:94–105 Haga K, Shiratori Y, Ito K, Sasaki K (2008) Chlorine poisoning of SOFC Ni-cermet anodes. J Electrochem Soc 155:B1233 Larminie J, Dicks A, Fuel Cell Systems Explained (Second edition). Wiley Publications Yang Z, Guo M, Wang N, Ma C, MH JW (2017) A short review on of cathode poisoning and corrosion in solid oxide fuel cell. Int J Hydrog Energy 42:24948–24959 Pavone M, EAC AMR (2011) Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ Sci 4:4933 Lee KC, Choi MB, Lim DK et al (2013) Effect of humidification on the performance of intermediate-temperature proton conducting ceramic fuel cells with ceramic composite cathodes. J Power Sources 232:224–233. https://doi.org/10.1016/j.jpowsour.2013.01.001 Zhao Z, Liu L, Zhang X, Wu W, Tu B, Cheng D (2013) High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode operating under CO2/H2O-containing atmosphere. Int J Hydrog Energy 38:15361–15370 Hu B, Mahapatra MK, HZ MK, Misture S (2014) Effect of CO2 on the stability of strontium doped lanthanum magnitite cathode. J Power Sources 268:404–413 Yang Q, Lin YS (2006) kinetics of carbon dioxide sorption on perovskite type metal oxides. Ind Eng Chem Res 45:6302–6310 Yang Z, Guo M, Wang N et al (2017) A short review of cathode poisoning and corrosion in solid oxide fuel cell. Int J Hydrog Energy 42:24948–24959 Sreedhar I, Agarwal B, Goyal P, Singh SA (2019) Recent advances in material and performance aspects of solid oxide fuel cells. J Electroanal Chem 113315 Brandon N (2017) Chapter- “An Introduction to Solid Oxide Fuel Cell Materials, Technology and Applications”, Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells, 1st Edition, Academic press Elsevier Aphale A, Liang C, Hu B, Singh P (2017) Cathode Degradation From Airborne Contaminants in Solid Oxide Fuel Cells, Solid Oxide Fuel Cell Lifetime and Reliability, 101-119 Zhao Z, Liu L, Zhang X et al (2013) A comparison on effects of CO2 on La0.8Sr0.2MnO3+δ and La0.6Sr0.4CoO3-δ cathodes. J Power Sources 222:542–553. https://doi.org/10.1016/j.jpowsour.2012.09.023 Hu B, Mahapatra MK, Keane M et al (2014) Effect of CO2 on the stability of strontium doped lanthanum manganite cathode. J Power Sources 268:404–413. https://doi.org/10.1016/j.jpowsour.2014.06.044 Darvish S, Asadikiya M, Hu B et al (2016) Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int J Hydrog Energy 41:10239–10248. https://doi.org/10.1016/j.ijhydene.2016.05.063 Nielsen J, Hagen A, Liu YL (2010) Effect of cathode gas humidification on performance and durability of solid oxide fuel cells. Solid State Ionics 181:517–524. https://doi.org/10.1016/j.ssi.2010.02.018 Nielsen J, Mogensen M (2011) SOFC LSM:YSZ cathode degradation induced by moisture: an impedance spectroscopy study. Solid State Ionics 189:74–81. https://doi.org/10.1016/j.ssi.2011.02.019 Bucher E, Sitte W, Klauser F, Bertel E (2012) Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La 0.6Sr 0.4CoO 3 - δ. Solid State Ionics 208:43–51. https://doi.org/10.1016/j.ssi.2011.12.005 Bucher E, Sitte W, Klauser F, Bertel E (2011) Oxygen exchange kinetics of La0.58Sr0.4Co 0.2Fe0.8O3 at 600 °c in dry and humid atmospheres. Solid State Ionics 191:61–67. https://doi.org/10.1016/j.ssi.2011.03.019 Bucher E, Sitte W (2011) Long-term stability of the oxygen exchange properties of (La,Sr) 1—Z(Co,Fe)O3 - δ in dry and wet atmospheres. Solid State Ionics 192:480–482. https://doi.org/10.1016/j.ssi.2010.01.006 Knöfel C, Chen M, Mogensen M (2011) The effect of humidity and oxygen partial pressure on LSM-YSZ cathode. Fuel Cells 11:669–677. https://doi.org/10.1002/fuce.201100021 Hu B, Keane M, Mahapatra MK, Singh P (2014) Stability of strontium-doped lanthanum manganite cathode in humidified air. J Power Sources 248:196–204. https://doi.org/10.1016/j.jpowsour.2013.08.098 Shen F, Lu K (2015) Moisture effect on La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 cathode behaviors in solid oxide fuel cells. Fuel Cells 15:105–114. https://doi.org/10.1002/fuce.201400032 Hagen A, Neufeld K, Liu YL (2010) Effect of humidity in air on performance and long-term durability of SOFCs. J Electrochem Soc 157:B1343. https://doi.org/10.1149/1.3459904 Liu RR, Kim SH, Taniguchi S et al (2011) Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. J Power Sources 196:7090–7096. https://doi.org/10.1016/j.jpowsour.2010.08.014 Bucher E, Gspan C, Hofer F, Sitte W (2013) Post-test analysis of silicon poisoning and phase decomposition in the SOFC cathode material La0.58Sr0.4Co0.2Fe0.8O3-δ by transmission electron microscopy. Solid State Ionics 230:7–11. https://doi.org/10.1016/j.ssi.2012.08.013 Perz M, Bucher E, Gspan C et al (2016) Long-term degradation of La0.6Sr0.4Co0.2Fe0.8O3-δ IT-SOFC cathodes due to silicon poisoning. Solid State Ionics 288:22–27. https://doi.org/10.1016/j.ssi.2016.01.005 Schrödl N, Bucher E, Egger A et al (2015) Long-term stability of the IT-SOFC cathode materials La0.6Sr0.4CoO3 - δ and La2NiO4+δ against combined chromium and silicon poisoning. Solid State Ionics 276:62–71. https://doi.org/10.1016/j.ssi.2015.03.035 Schuler JA, Wuillemin Z, Hessler-Wyser A, Van Herle J (2010) Glass-forming exogenous silicon contamination in solid oxide fuel cell cathodes. Electrochem Solid-State Lett 14:B20. https://doi.org/10.1149/1.3516622 Reisert M, Aphale A, Singh P (2018) Solid oxide electrochemical systems: material degradation processes and novel mitigation approaches. Materials (Basel) 11:2169. https://doi.org/10.3390/ma11112169 Bucher E (2011) A review of surface-related effects limiting the performance of solid oxide fuel cell cathodes. Berg- und Hüttenmännische Monatshefte 156:423–428 Wang CC, O’Donnell K, Jian L, Jiang SP (2015) Co-deposition and poisoning of chromium and sulfur contaminants on La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ cathodes of solid oxide fuel cells. J Electrochem Soc 162:F507–F512. https://doi.org/10.1149/2.0231506jes Wang CC, Chen K, Jiang SP (2016) Mechanism and kinetics of SO 2 poisoning on the electrochemical activity of La 0.8 Sr 0.2 MnO 3 cathodes of solid oxide fuel cells. J Electrochem Soc 163:F771–F780. https://doi.org/10.1149/2.0221608jes Bucher E, Gspan C, Hofer F, Sitte W (2013) Sulphur poisoning of the SOFC cathode material La0.6Sr 0.4CoO3-δ. Solid State Ionics 238:15–23. https://doi.org/10.1016/j.ssi.2013.03.007 Wang F, Yamaji K, Cho D-H et al (2011) Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 cathode for SOFCs. J Electrochem Soc 158:B1391. https://doi.org/10.1149/2.059111jes Wang CC, He S, Chen K et al (2017) Effect of SO 2 poisoning on the electrochemical activity of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ cathodes of solid oxide fuel cells. J Electrochem Soc 164:F514–F524. https://doi.org/10.1149/2.0421706jes Sasaki K, Haga K, Yoshizumi T et al (2011) Chemical durability of solid oxide fuel cells: influence of impurities on long-term performance. J Power Sources 196:9130–9140. https://doi.org/10.1016/j.jpowsour.2010.09.122 Brito ME, Yokokawa H (2012) degradation mechanism with impurities and life time estimation. Electrochem Soc 42:297–304 Horita T, Cho DH, Wang F, Nishi M, Shimonosono T, Kishimoto H, Yamaji K, Brito ME, Yokokawa H (2013) Degradation mechanism of SOFC cathodes under CrO3 and SO2 impurity exposures. Electrochem Soc 51:69–77 Yokokawa H, Yamaji K, Yan K et al (2017) The correlation of sulfur distribution in LSCF and performance degradation under different operation temperatures. ECS Trans 78:927–933. https://doi.org/10.1149/07801.0927ecst Wang CC, Chen K, Jiang SP (2014) Sulfur deposition and poisoning of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ cathode materials of solid oxide fuel cells. J Electrochem Soc 161:F1133–F1139. https://doi.org/10.1149/2.0041412jes Kishimoto H, Wang F, Cho D-H et al (2015) Degradation of LSCF cathode induced by SO2 in Air. ECS Trans 68:1045–1050. https://doi.org/10.1149/06801.1045ecst Budiman RA, Ishiyama T, Bagarinao KD, Kishimoto H, Yamaji K, Horita T, Yokokawa H (2017) Evaluation of electrochemical properties of La0.6Sr0.4Co0.2Fe0.8O3-δ porous electrode with sulphur poisoning. Electrochem Soc 759-764:759–764 Kushi T (2017) Effects of sulfur poisoning on degradation phenomena in oxygen electrodes of solid oxide electrolysis cells and solid oxide fuel cells. Int J Hydrog Energy 42:9396–9405. https://doi.org/10.1016/j.ijhydene.2017.01.151 Wang CC, Luo D, Jiang SP, Lin B (2018) Highly sulfur poisoning-tolerant BaCeO3-impregnated La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for solid oxide fuel cells. Journal of Physics D: Applied Physics 51:43 Choi DW, Ohashi M, Lozano CA, Vanzee JW, Aungkavattana P, Shimpalee S (2019) Sulfur Diffusion of Hydrogen Sulfide Contaminants to Cathode in a Micro-tubular Solid Oxide Fuel Cell. Electrochimica Acta Fergus JW (2007) Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. Int J Hydrogen Energy 32(16):3664–3671 Jiang SP, Sam Zhang YDZ (2005) Early interaction between Fe-Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells. Mater Res Soc 20:747–758 Jiang SP, Zhen Y (2008) Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics 179:1459–1464. https://doi.org/10.1016/j.ssi.2008.01.006 Lianga C, Hu B, Aphale A, Venkataraman MB, Mahapatra MK, Singh P (2017) Mitigation of Chromium Assisted Degradation of LSM Cathode in SOFC. Electrochem Soc 75(28):57–64 Zhang X, Yu G, Zeng S et al (2018) Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells. J Power Sources 381:26–29. https://doi.org/10.1016/j.jpowsour.2018.01.072 Heo SJ, Hu B, Aphale A, Uddin MA, Singh P (2017) Low-Temperature Chromium Poisoning of SOFC Cathode. Electrochem Soc 78(1):1055–1061 Iwai H, Yamaguchi Y, Kishimoto M, Yoshida H, Saito M (2017) Numerical Study on Progress of Cr Poisoning in LSM-YSZ Cathode of a Planar Solid Oxide Fuel Cell. ECS Transactions 78(1):955–964 Jiang SP, Zhang JP, Apateanu L, Foger K (2002) Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells. I. Mechanism and Kinetics. J Electrochem Soc 147:4013. https://doi.org/10.1149/1.1394012 Li J, Yan D, Zhang W et al (2017) The investigation of Cr deposition and poisoning effect on Sr-doped lanthanum manganite cathode induced by cathodic polarization for intermediate temperature solid oxide fuel cell. Electrochim Acta 255:31–40. https://doi.org/10.1016/j.electacta.2017.09.112 Wei B, Chen K, Zhao L et al (2015) Chromium deposition and poisoning at la 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ oxygen electrodes of solid oxide electrolysis cells. Phys Chem Chem Phys 17:1601–1609. https://doi.org/10.1039/c4cp05110f Jiang SP, Zhang S, Zhen YD (2005) Deposition of Cr species at (La,Sr)(Co,Fe)O[sub 3] cathodes of solid oxide fuel cells. J Electrochem Soc 153:A127. https://doi.org/10.1149/1.2136077 Wei B, Chen K, Wang CC et al (2015) Cr deposition on porous La0.6Sr0.4Co0.2Fe0.8O3 - δ electrodes of solid oxide cells under open circuit condition. Solid State Ionics 281:29–37. https://doi.org/10.1016/j.ssi.2015.08.018 Jiang SP, Chen X (2014) Chromium deposition and poisoning of cathodes of solid oxide fuel cells - A review. Int J Hydrog Energy 39:505–531. https://doi.org/10.1016/j.ijhydene.2013.10.042 Amezawa K, Shindo Y, Fujimaki Y et al (2017) Mechanism of chromium poisoning in SOFC cathode investigated by using pattern thin film model electrode. ECS Trans 78:965–970. https://doi.org/10.1149/07801.0965ecst Krishnan S, Mahapatra MK, Singh P, Ramprasad R (2017) First principles study of Cr poisoning in solid oxide fuel cell cathodes: application to (La,Sr) CoO3. Comput Mater Sci 137:6–9. https://doi.org/10.1016/j.commatsci.2017.04.020 Chen X, Zhang L, Liu E, Jiang SP (2011) A fundamental study of chromium deposition and poisoning at (La 0.8Sr0.2)0.95(Mn1-xCo x)O3 ± δ (0.0≤ x ≤1.0) cathodes of solid oxide fuel cells. Int J Hydrog Energy 36:805–821. https://doi.org/10.1016/j.ijhydene.2010.09.087 Horita T, Xiong Y, Kishimoto H et al (2010) Chromium poisoning and degradation at (La,Sr)MnO and (La,Sr)FeO[sub 3] cathodes for solid oxide fuel cells. J Electrochem Soc 157:B614. https://doi.org/10.1149/1.3322103 Bevilacqua M, Fornasiero P, Vohs JM et al (2009) Solid oxide fuel cell cathodes prepared by infiltration of LaNi0.6Fe0.4O3 and La0.91Sr0.09Ni0.6Fe0.4O3 in porous yttria-stabilized zirconia. J Power Sources 193:747–753 Huang B, Xing YF, Xu L, Tan X, Xu S, Zang HY, Wang YS (2018) Chromium poisoning and degradation at LaNi0.6Fe0.4O3 cathode with LaNi0.6Fe0.4O3–Gd0.2Ce0.8O2 functional layer for SOFC under open circuit condition. J Solid State Electrochem 22(1) Stodolny MK, Boukamp BA, Blank DHA, Van Berkel FPF (2011) Impact of Cr-poisoning on the conductivity of LaNi 0.6Fe 0.4O 3. J Power Sources 196:9290–9298. https://doi.org/10.1016/j.jpowsour.2011.07.070 Yin X, Bencze L, Motalov V et al (2018) Thermodynamic perspective of Sr-related degradation issues in SOFCs. Int J Appl Ceram Technol 15:380–390. https://doi.org/10.1111/ijac.12809 Chen Y, Yoo S, Li X et al (2018) An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes. Nano Energy 47:474–480. https://doi.org/10.1016/j.nanoen.2018.03.043 Zhao L, Drennan J, Kong C, Sudath Amarasinghe SPJ (2013) Surface segregation and chromium deposition and poisoning on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. Electrochem Soc 57:599–604 Transactions ECS, Society TE (2013) Influence of cathode polarization on the chromium poisoning of SOFC cathodes consisting of LSM. LSCF and LNF Eunjoo Park 50:21–25 Schiemann K, Vibhu V, Yildiz S et al (2017) Chrome poisoning of non-manganiferous cathode materials in solid oxide fuel cells (SOFCs). ECS Trans 78:1027–1034. https://doi.org/10.1149/07801.1027ecst Matsuzaki Y, Yasuda I (2002) Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes. J Electrochem Soc 148:A126. https://doi.org/10.1149/1.1339869 Hu B, Krishnan S, Liang C et al (2017) Experimental and thermodynamic evaluation of La1−xSrxMnO3±Δ and La1−xSrxCo1−yFeyO3−Δ cathodes in Cr-containing humidified air. Int J Hydrog Energy 42:10208–10216. https://doi.org/10.1016/j.ijhydene.2017.01.040 Zekri A, Schnetger B, Essafi A, Plaggenborg T, Parisi J, Knipper M (2017) Microstructure Degradation of LSM / YSZ Cathodes for Solid Oxide Fuel Cells Aged in Stack after Long Operation Time. The Electrochemical Soc. 164(13):1385–1391 Miyoshi K, Iwai H, Kishimoto M et al (2016) Chromium poisoning in (La,Sr)MnO3 cathode: three-dimensional simulation of a solid oxide fuel cell. J Power Sources 326:331–340. https://doi.org/10.1016/j.jpowsour.2016.06.110 Wang CC, Becker T, Chen K et al (2014) Effect of temperature on the chromium deposition and poisoning of La 0.6Sr0.4Co0.2Fe0.8O 3-δ cathodes of solid oxide fuel cells. Electrochim Acta 139:173–179. https://doi.org/10.1016/j.electacta.2014.07.028 Xiong C, Taillon JA, Pellegrinelli C et al (2016) Long-term Cr poisoning effect on LSCF-GDC composite cathodes sintered at different temperatures. J Electrochem Soc 163:F1091–F1099. https://doi.org/10.1149/2.0841609jes Wang R, Würth M, Pal UB et al (2017) Roles of humidity and cathodic current in chromium poisoning of Sr-doped LaMnO3-based cathodes in solid oxide fuel cells. J Power Sources 360:87–97. https://doi.org/10.1016/j.jpowsour.2017.06.005 Chen X, Zhen Y, Li J, Jiang SP (2010) Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+δ cathodes of solid oxide fuel cells. Int J Hydrog Energy 35:2477–2485. https://doi.org/10.1016/j.ijhydene.2009.12.185 Wang R, Pal UB, Gopalan S, Basu SN (2017) Chromium poisoning effects on performance of (La,Sr)MnO 3 -based cathode in anode-supported solid oxide fuel cells. J Electrochem Soc 164:F740–F747. https://doi.org/10.1149/2.0441707jes Wang R, Mo B, Würth M, Pal UB, Gopalan S, SNB (2018) Chapter 6-“Estimation of polarization loss due to chromium poisoning of LSM based cathodes in solid oxide fuel cells.” Ceramic Engineering and Science Proceedings, The American Ceramic Soc Park E, Taniguchi S, Daio T et al (2014) Influence of cathode polarization on the chromium deposition near the cathode/electrolyte interface of SOFC. Int J Hydrog Energy 39:1463–1475. https://doi.org/10.1016/j.ijhydene.2013.11.030 Li G, Von Spakovsky MR, Shen F, Lu K (2018) Multiscale transient and steady-state study of the influence of microstructure degradation and chromium oxide poisoning on solid oxide fuel cell cathode performance. J Non-Equilibrium Thermodyn 43:21–42. https://doi.org/10.1515/jnet-2017-0013 Horita T, Cho DH, Wang F et al (2012) Correlation between degradation of cathode performance and chromium concentration in (La,Sr)MnO 3 cathode. Solid State Ionics 225:151–156. https://doi.org/10.1016/j.ssi.2012.02.048 Do-Hyung C, Haruo K, Brito ME, Katsuhiko Y, Mina N, Taro S, Fangfang W, Yokokawa H, Horita T (2013) Cathode performance and deposited Cr under Cr poisoning condition in the (La0.6Sr0.4)(Co0.2Fe0.8)O3 cathode. Electrochem Soc 50:125–131 Singheiser L, Huczkowski P, Markus T, Quadakkers WJ (2010). Chapter-“High Temperature Corrosion Issues for Metallic Materials in Solid Oxide Fuel Cells”, Shreir’s Corrosion, Volume 1, Elsevier Publications Zhao L, Amarasinghe S, Jiang SP (2013) Enhanced chromium tolerance of La0.6Sr0.4Co 0.2Fe0.8O3 - δ electrode of solid oxide fuel cells by Gd0.1Ce0.9O1.95 impregnation. Electrochem Commun 37:84–87. https://doi.org/10.1016/j.elecom.2013.10.019 Zhao L, Amarasinghe S, Jiang SP (2013) Enhanced chromium tolerance of Gd0.1Ce0.9O1.95 impregnated La0.6Sr0.4Co0.2Fe0.8O3-δ electrode of solid oxide fuel cells. Electrochem Soc 57:2163–2173 Wang R, Sun Z, Lu Y et al (2017) Chromium poisoning of cathodes in solid oxide fuel cells and its mitigation employing CuMn 1.8 O 4 spinel coatings on interconnects. ECS Trans 78:1665–1674. https://doi.org/10.1149/07801.1665ecst Wang R, Sun Z, Pal UB et al (2018) Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect. J Power Sources 376:100–110. https://doi.org/10.1016/j.jpowsour.2017.11.069 Uddin MA, Aphale AN, Hu B et al (2017) In-cell chromium Getters to mitigate cathode poisoning in SOFC stack. ECS Trans 78:1039–1046. https://doi.org/10.1149/07801.1039ecst Uddin MA, Aphale A, Hu B et al (2017) Electrochemical validation of in-cell chromium getters to mitigate chromium poisoning in SOFC stack. J Electrochem Soc 164:F1342–F1347. https://doi.org/10.1149/2.0421713jes Lee J-H, Kim H, Yoon KJ et al (2017) Suppression of chromium poisoning in SOFC cathode using chromium trapping materials. ECS Trans 78:1035–1038. https://doi.org/10.1149/07801.1035ecst Yokokawa H, Horita T, Yamaji K et al (2013) Chromium poisoning of LaMnO3-based cathode within generalized approach. Fuel Cells 13:526–535. https://doi.org/10.1002/fuce.201200164 Wang CC, Darvish S, Chen K et al (2019) Combined Cr and S poisoning of La 0.8 Sr 0.2 MnO 3-δ (LSM)cathode of solid oxide fuel cells. Electrochim Acta 312:202–212. https://doi.org/10.1016/j.electacta.2019.04.116 Park JH, Han SM, Kim BK, Lee JH, Yun KJ, Kim H, Ji H, Son J (2019) Sintered powder-base cathode over vacuum-deposited thin-film electrolyte of low- temperature solid oxide fuel cell: Performance and stability. Electrochimica Acta 296:1055–1063 Mason JH, Celik IB, Lee S et al (2017) Prediction of performance degradation due to grain coarsening effects in solid oxide fuel cells. ECS Trans 78:2323–2336. https://doi.org/10.1149/07801.2323ecst Oh D, Gostovic D, Wachsman ED (2012) Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. Journal of Materials Research 27(15):1992–1999 Online VA, Ding H, Virkar AV et al (2013) Suppression of Sr surface segregation in La1?xSrxCo1?yFeyO3?d: a first principles study. PCCP 15:489–496. https://doi.org/10.1039/c2cp43148c Wang H, Sumi H, Barnett SA (2018) Effect of high-temperature ageing on (La,Sr)(Co,Fe)O3-δ cathodes in microtubular solid oxide fuel cells. Solid State Ionics 323:85–91. https://doi.org/10.1016/j.ssi.2018.05.019 Egger A, Perz M, Bucher E, Gspan C, Sitte W (2019) Effect of Microstructure on the Degradation of La0.6Sr0.4CoO3–δ Electrodes in Dry and Humid Atmospheres, presented at the 13th EUROPEAN SOFC & SOE Forum (EFCF2018), July 3–6, 2018 held in Lucerne, Switzerland. Organized by the European Fuel Cells Forum Chen M, Ovtar S, Hauch A, Veltz S (2018) Comparison between La0.6Sr0.4CoO3-d and LaNi0.6Co0.4O3-d infiltrated oxygen electrodes for longterm durable solid oxide fuel cells. Electrochimica Acta 266:293–304 De Vero JC, Bagarinao KD, Ishiyama T, Kishimoto H, Yamaji K, Horita T, Yokokawa H (2018) Elucidating the Degradation Mechanism at the Cathode-Interlayer Interfaces of Solid Oxide Fuel Cells. Journal of Electrochemical Society 165(16):1340–1348 Santos GL, Porras JM, Losilla ER, Martin F, Barrado JR, Lopez DM (2017) Stability and performance of La0.6Sr0.4Co0.2Fe0.8O3-d nanostructured cathodes with Ce0.8Gd0.2O1.9 surface coating. Journal of Power Sources 347:178–185 Morales M, Morata A, Morel B, Montinaro D, Hubert M, Sanchez DF, Joud FL (2017) Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ/Gd0.1Ce0.9O2-δ composite electrode operated under solid oxide electrolysis and fuel cell conditions. Electrochimica Acta. 241:459–476 Transactions ECS, Society TE (2017) Solid oxide cell degradation operated in fuel cell and electrolysis modes: a comparative study on Ni agglomeration and LSCF destabilization M. Hubert. 78:3167–3177 Ascolani-Yael J, Montenegro-Hernández A, Troiani H, Mogni L, Caneiro A (2017) Study of the rate limiting steps and degradation of a GDC impregnated La0.6Sr0.4Co0.8Fe0.2O3-δ cathode. Electrochem Soc 78:795–805 Uhlenbruck S, Jordan N, Sebold D et al (2007) Thin film coating technologies of ( Ce , Gd ) O 2- δ interlayers for application in ceramic hightemperature fuel cells. Thin Solid Films 515(7-8):4053–4060 Fan ESC, Kuhn J, Kesler O (2016) In fluence of carbon black pore former on performance and degradation. J Power Sources 316:72–84. https://doi.org/10.1016/j.jpowsour.2016.02.075 Roeder JF, Golalikhani M, Zeberoff AF, Van Buskirk PC, Torabi A, Barton JM, Willman CM, Ghezel-Ayagh H, Wen Y, Huang K (2017) Group IVA oxide surface modification of LSCF cathode powders by atomic layer deposition. Electrochem Soc 78:935–942 Soldati A, Neto ET, Troiani HE, Baque L, Schreiber A, Serquis A (2016) Degradation of oxygen reduction reaction kinetics in porous La0.6Sr0.4Co0.2Fe0.8O3-d cathodes due to aging- induced changes in surface chemistry. J Power Sources 337:1–7 Matsui T, Komoto M, Muroyama H, Kishida K (2016) Degradation factors in ( La , Sr )( Co , Fe ) O 3- d cathode / Sm 2 O 3 e CeO 2 interlayer / Y 2 O 3 e ZrO 2 electrolyte system during operation of solid oxide fuel cells. J Power Sources 312:80–85. https://doi.org/10.1016/j.jpowsour.2016.02.052 Ni N, Cooper SJ, Williams REA et al (2016) Oxide fuel cell cathodes at the nanometre scale and below cell cathodes at the nanometre scale and below. Appl Mater Interfaces 95:0–32. https://doi.org/10.1021/acsami.6b05290 Na N, Wang CC, Jiang SP, Skinner SJ (2019) Synergistic effects of temperature and polarization on Cr poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ Solid Oxide Fuel Cell Cathodes. Journal of Material Chemistry A 7(15):9253–9262 Harris J, Yan Y, Bateni R, Kesler O (2016) Degradation of La0.6Sr0.4Co0.2Fe0.8O3–d– Ce0.8Sm0.2O1.9 Cathodes on Coated and Uncoated Porous Metal Supports. Fuel Cells 16(3):319–329 Shimada H, Yamaguchi T, Sumi H et al (2017) Extremely fi ne structured cathode for solid oxide fuel cells using Sr-doped LaMnO 3 and Y 2 O 3 -stabilized ZrO 2 nano-composite powder synthesized by spray pyrolysis. J Power Sources 341:280–284. https://doi.org/10.1016/j.jpowsour.2016.12.002 Yan A, Cheng M, Dong Y et al (2006) Investigation of a Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- δ based cathode IT-SOFC. I. The effect of CO 2 on the cell performance. Appl Catal B Environ 66:64–71. https://doi.org/10.1016/j.apcatb.2006.02.021 Efimov K, Klande T, Juditzki N, Feldhoff A (2012) Ca-containing CO 2-tolerant perovskite materials for oxygen separation. J Membr Sci 389:205–215. https://doi.org/10.1016/j.memsci.2011.10.030 Chen Y, Yoo S, Choi Y et al (2018) A highly active, CO 2 -tolerant electrode for the oxygen reduction reaction. Energy Environ Sci 11:2458–2466. https://doi.org/10.1039/c8ee01140k Li J, Zhang Q, Qiu P et al (2017) A CO2-tolerant La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δcathode for intermediate temperature solid oxide fuel cells. J Power Sources 342:623–628. https://doi.org/10.1016/j.jpowsour.2016.12.106 Yang Z, Liu Y, Chen Y et al (2017) Effects of humidity on Ba0.9Co0.7Fe0.2Nb0.1O3−Δ cathode performance and durability of solid oxide fuel cells. Int J Hydrog Energy 42:6997–7002. https://doi.org/10.1016/j.ijhydene.2016.11.045 Wang J, Yang Z, Yang K et al (2018) Chromium deposition and poisoning on Ba0.9Co0.7Fe0.2Nb0.1O3−δ cathode of solid oxide fuel cells. Electrochim Acta 289:503–515. https://doi.org/10.1016/j.electacta.2018.08.092 Li J, Li J, Yan D et al (2018) Promoted Cr-poisoning tolerance of La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode for intermediate temperature solid oxide fuel cells. Electrochim Acta 270:294–301. https://doi.org/10.1016/j.electacta.2018.03.053 Zhang Z, Chen D, Dong F et al (2016) Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. J Membr Sci 519:11–21. https://doi.org/10.1016/j.memsci.2016.07.043 Chen W, Chen CS, Winnubst L (2011) Ta-doped SrCo0.8Fe0.2O3-δ membranes: phase stability and oxygen permeation in CO2 atmosphere. Solid State Ionics 196:30–33. https://doi.org/10.1016/j.ssi.2011.06.011 Zhang Y, Yang G, Chen G et al (2016) Evaluation of the CO 2 poisoning effect on a highly active cathode SrSc 0.175 Nb 0.025 Co 0.8 O 3-δ in the oxygen reduction reaction. ACS Appl Mater Interfaces 8:3003–3011. https://doi.org/10.1021/acsami.5b09780 Zhu Y, Zhou W, Chen Y, Shao Z (2016) An Aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells. Angew Chem Int Ed 55:8988–8993. https://doi.org/10.1002/anie.201604160 Chen K, Hyodo J, O’Donnell KM et al (2014) Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells. J Electrochem Soc 161:F1163–F1170. https://doi.org/10.1149/2.0251412jes Yáng Z, Harvey AS, Gauckler LJ (2009) Influence of CO2 on Ba0.2Sr0.8Co0.8Fe0.2O3-δ at elevated temperatures. Scr Mater 61:1083–1086. https://doi.org/10.1016/j.scriptamat.2009.08.039 Lee S, Choi J, Shin D (2018) Microstructural stability of SSC fibrous cathode with embedded SDC particles for solid oxide fuel cells operating on hydrogen. Int J Hydrog Energy 43:11372–11377. https://doi.org/10.1016/j.ijhydene.2018.03.041 Madi H, Lanzini A, Papurello D et al (2016) Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments. J Power Sources 326:349–356. https://doi.org/10.1016/j.jpowsour.2016.07.003 Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of coal syngas containing HCl on the performance of solid oxide fuel cells: Investigations into the effect of operational temperature and HCl concentration. J Power Sources 169:347–354. https://doi.org/10.1016/j.jpowsour.2007.03.018 Marina OA, Pederson LR, Thomsen EC, Coyle CA, Yoon KJ (2010) Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas. J Power Sources 195:7033–7037 Xu C, Gong M, Zondlo JW et al (2010) The effect of HCl in syngas on Ni-YSZ anode-supported solid oxide fuel cells. J Power Sources 195:2149–2158. https://doi.org/10.1016/j.jpowsour.2009.09.079 Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. https://doi.org/10.1016/S0926-860X(00)00843-7 Hagen A, Rasmussen JFB, Thydén K (2011) Durability of solid oxide fuel cells using sulfur containing fuels. J Power Sources 196:7271–7276. https://doi.org/10.1016/j.jpowsour.2011.02.053 Haga K, Adachi S, Shiratori Y et al (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179:1427–1431. https://doi.org/10.1016/j.ssi.2008.02.062 Vahc ZY, Jung CY, Yi SC (2014) Performance degradation of solid oxide fuel cells due to sulfur poisoning of the electrochemical reaction and internal reforming reaction. Int J Hydrog Energy 39:17275–17283. https://doi.org/10.1016/j.ijhydene.2014.08.064 Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168:289–298. https://doi.org/10.1016/j.jpowsour.2007.03.026 Sasaki K, Susuki K, Iyoshi A et al (2006) H[sub2]S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023. https://doi.org/10.1149/1.2336075 Hauch A, Hagen A, Hjelm J, Ramos T (2014) Sulfur poisoning of SOFC anodes: effect of overpotential on long-term degradation. J Electrochem Soc 161:F734–F743. https://doi.org/10.1149/2.080406jes Khan MS, Lee S-B, Song R-H et al (2016) Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: a review. Ceram Int 42:35–48. https://doi.org/10.1016/j.ceramint.2015.09.006 Matsuzaki Y (2000) The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ionics 132:261–269. https://doi.org/10.1016/s0167-2738(00)00653-6 Brightman E, Ivey DG, Brett DJL, Brandon NP (2011) The effect of current density on H2S-poisoning of nickel-based solid oxide fuel cell anodes. J Power Sources 196:7182–7187. https://doi.org/10.1016/j.jpowsour.2010.09.089 Yoshizumi T, Taniguchi S, Shiratori Y, Sasaki K (2012) Sulfur poisoning of sofcs: voltage oscillation and Ni oxidation. J Electrochem Soc 159:F693–F701. https://doi.org/10.1149/2.032211jes Hwang B, Kwon H, Ko J et al (2018) Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying. Appl Surf Sci 429:87–94. https://doi.org/10.1016/j.apsusc.2017.06.164 Malyi OI, Chen Z, Kulish VV et al (2013) Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces. Appl Surf Sci 264:320–328. https://doi.org/10.1016/j.apsusc.2012.10.021 Niakolas DK, Neofytidis CS, Neophytides SG (2017) Effect of Au and/or Mo doping on the development of carbon and sulfur tolerant anodes for SOFCs—a short review. Front Environ Sci 5:1–20. https://doi.org/10.3389/fenvs.2017.00078 Chen K, Jiang SP (2016) Review—materials degradation of solid oxide electrolysis cells. J Electrochem Soc 163:F3070–F3083. https://doi.org/10.1149/2.0101611jes Boccaccini DN, Frandsen HL, Soprani S et al (2018) Influence of porosity on mechanical properties of tetragonal stabilized zirconia. J Eur Ceram Soc 38:1720–1735. https://doi.org/10.1016/j.jeurceramsoc.2017.09.029 Chen T, Wang WG, Miao H et al (2011) Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas. J Power Sources 196:2461–2468. https://doi.org/10.1016/j.jpowsour.2010.11.095 Singh A, Hill JM (2012) Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane. J Power Sources 214:185–194. https://doi.org/10.1016/j.jpowsour.2012.04.062 Steiger P, Burnat D, Madi H et al (2019) Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel. Chem Mater 31:748–758. https://doi.org/10.1021/acs.chemmater.8b03669 Li W, Shi Y, Luo Y et al (2015) Carbon deposition on patterned nickel / yttria stabilized zirconia electrodes for solid oxide fuel cell / solid oxide electrolysis cell modes. J Power Sources 276:26–31. https://doi.org/10.1016/j.jpowsour.2014.11.106 Chen Y, Chen S, Hackett G et al (2013) Microstructure degradation of YSZ in Ni / YSZ anodes of SOFC operated in phosphine-containing fuels. Solid State Ionics 234:25–32. https://doi.org/10.1016/j.ssi.2012.12.019 Kim J-W (1999) Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J Electrochem Soc 146:69. https://doi.org/10.1149/1.1391566 Wang W, Zhu C, Xie K, Gan L (2018) High performance, coking-resistant and sulfur-tolerant anode for solid oxide fuel cell. J Power Sources 406:1–6. https://doi.org/10.1016/j.jpowsour.2018.10.040 Tao S, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323. https://doi.org/10.1038/nmat871 Sun Y-F, Li J-H, Cui L et al (2015) A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: a novel coking-tolerant fuel cell anode catalyst. Nanoscale 7:11173–11181. https://doi.org/10.1039/c5nr02518d Kim KI, Kim HS, Kim HS, Yun JW (2018) H2S tolerance effects of Ce0.8Sm0.2O2−δ modification on Sr0.92Y0.08Ti1−xNixO3−δ anode in solid oxide fuel cells. J Ind Eng Chem 68:187–195. https://doi.org/10.1016/j.jiec.2018.07.045 Gorte RJ, Kim H, Vohs JM (2002) Novel SOFCs anode for the direct electrochemical oxidation by hydrocarbon. J Power Sources 10:1–2 Devianto H, Yoon SP, Nam SW, Han J, Lim TH (2006) The effect of a ceria coating on the H2S tolerance of a molten carbonate fuel cell. J Power Sources 159:1147 He H, Gorte RJ, Vohs JM (2005) Highly sulfur tolerant Cu-Ceria anodes for SOFCs. Electrochem Solid-State Lett 8:A279 Jeong Myeong Lee JWY (2016) Characteristics of Sr0.92 Y0.08 Ti0.7 Fe0.3 O3-δ anode running on humidified methane fuel in solid oxide fuel cells. Ceram Int 42:8698–8705 Zeng Z, Natesan K (2004) Corrosion of metallic interconnects for SOFC in fuel gases. Solid State Ionics 167:9–16. https://doi.org/10.1016/j.ssi.2003.11.026 Brylewski T, Nanko M, Maruyama T, Przybylski K (2001) Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics 143:131–150. https://doi.org/10.1016/S0167-2738(01)00863-3 Huang K, Hou PY, Goodenough JB (2001) Reduced area specific resistance for iron-based metallic interconnects by surface oxide coatings. Mater Res Bull 36:81–95. https://doi.org/10.1016/S0025-5408(01)00506-2 Masi A, Frangini S, Carlini M et al (2015) Evaluation of a novel perovskite-based conversion coating for corrosion protection of 13Cr ferritic stainless steels under relevant SOFC oxidizing conditions. ECS Trans 68:1625–1632. https://doi.org/10.1149/06801.1625ecst Masi A, Frangini S, Pumiglia D et al (2017) LaFeO3 perovskite conversion coatings grown on a 13Cr ferritic stainless steel: a corrosion degradation study in simulated solid oxide fuel cell (SOFC) interconnect conditions at 700 °C. Mater Corros 68:536–545. https://doi.org/10.1002/maco.201609177 Kidner NJ, Ibanez S, Seabaugh MM, Swartz SL (2017) Advances in low temperature coatings for solid oxide fuel cell components. ECS Trans 78:1897–1901 Ma J, Duan N, Han Y et al (2018) Hot corrosion of Gd 2 O 3 -doped CeO 2 electrolyte in solid oxide fuel cells with a liquid antimony anode. J Power Sources 401:397–402. https://doi.org/10.1016/j.jpowsour.2018.08.083 Jhuang JW, Lee KR, Kuei CJ et al (2017) Chemical stability and electrical and mechanical properties of BaZrxCe0.8-xY0.2O3 with CeO2 protection method. Int J Hydrog Energy 42:22259–22265. https://doi.org/10.1016/j.ijhydene.2017.03.126 Steiger P, Burnat D, Madi H, Mai A, Holzer L, Herle JV, Krocher O, Heel A, Ferri D (2019) Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel. Chem. Mater. ACS publications 31(3):748–758 Tseng CJ, Chang JK, Hung IM, Lee KR, Lee SW (2014) BaZr0.2Ce0.8-xYxO3-δ solid oxide fuel cell electrolyte synthesized by sol-gel combined with composition-exchange method. Int J Hydrog Energy 39:4434–4440 Lyagaeva YG, Medvedev DA, Denim AK, Tsiakaras PRO (2015) Thermal expansion of materials in the barium cerate-zircoate system. Phys Solid State 57:285–289 Lee SW, Tseng CJ, Chang JK, Lee KR, Chen CT, Hung IM et al (2014) Synthesis and characterization of Ba0.6Sr0.4Ce0.8-xZrxY0.2O3-δ proton-conducting oxides for use as fuel cell electrolyte. J Alloys Compd 586:S506–S510 Gasper P, Lu Y, Basu SN, Gopalan S, Pal UB (2019) Effect of anodic current density on the spreading of infiltrated nickel nanoparticles in nickelyttria stabilized zirconia cermet anodes. J Power Sources 410–411(15-31):196–203 Yoshikawa M, Yamamoto T, Yasumoto K, Mugikura Y (2017) Degradation analysis of SOFC stack performance: investigation of cathode sulfur poisoning due to contamination in air. Electrochem Soc 75:23–31 Thambiraj N, Suciu C, Waernhus I, Arild Vik ACH (2017) SOFC cathode degradation due to salt contamination. Electrochem Soc 78:915–925 Wang J, Yang Z, Lv Y et al (2019) Effect of CO2 on La0.4Sr0.6Co0.2Fe0.7Nb0.103-d cathode for solid oxide fuel cells. J Electroanal Chem 847:113256. https://doi.org/10.1016/j.jelechem.2019.113256 Li M, Hua B, Jiang SP, Li J (2017) Coke Resistant and Sulfur Tolerant Ni-based Cermet Anodes for Solid Oxide Fuel Cells. ECS Trans 78(1):1217–1228 Garcés D, Wang H, Barnett SA, Leyva AG, Mogni LV (2017) Study of the mechanisms of O2-reduction and degradation operating on La0.5-XPrxBa0.5CoO3-δ cathodes for SOFCs. Electrochem Soc 78:1011–1020 Yang Z, Liu Y, Zhu T et al (2016) Mechanism analysis of CO2 corrosion on Ba0.9Co0.7Fe0.2Nb0.1O3-δ cathode. Int J Hydrog Energy 41:1997–2001. https://doi.org/10.1016/j.ijhydene.2015.11.095 Lai KYK-Y, Manthiram A (2019) CO 2 -tolerant (Y,Tb)Ba(Co,Ga) 4 O 7 cathodes with low thermal expansion for solid oxide fuel cells. J Mater Chem A 7:8540–8549. https://doi.org/10.1039/c9ta01338e Stenzel A, Fähsing D, Schütze M, Galetz MC (2019) Volatilization kinetics of chromium oxide, manganese oxide, and manganese chromium spinel at high temperatures in environments containing water vapor. https://doi.org/10.1002/maco.201810655 Jiao Z, Shikazono N (2018) In operando optical study of active three phase boundary of nickel-yttria stabilized zirconia solid-oxide fuel cell anode under polarization. J Power Sources 396:119–123 Lee T, Park K, Kim N et al (2016) degradation prevention operating logic for intermediate temperature- solid oxide fuel cells. J Power Sources 331:495–506. https://doi.org/10.1016/j.jpowsour.2016.09.080 Ding D, Li X, Lai Y, Liu M (2014) Environmental Science Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 7:552–575. https://doi.org/10.1039/c3ee42926a Klande T, Ravkina O, Feldhoff A (2013) Effect of A-site lanthanum doping on the CO2 tolerance of SrCo0.8Fe0.2O3—δ oxygen-transporting membranes. J Membr Sci 437:122–130. https://doi.org/10.1016/j.memsci.2013.02.051 Zhu Y, Sunarso J, Zhou W, Shao Z (2015) Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9-xFexO3-δ cathodes for solid oxide fuel cells. Appl Catal B Environ 172–173:52–57. https://doi.org/10.1016/j.apcatb.2015.02.010 Lu H, Kim JP, Son SH, Park JH (2011) Novel SrCo1-2x(Fe,Nb)xO3 - δ (x = 0.05, 0.10) oxides targeting CO2 capture and O2 enrichment: Structural stability and oxygen sorption properties. Mater Lett 65:2858–2860. https://doi.org/10.1016/j.matlet.2011.06.062 Chen W, Sheng CC, Bouwmeester HJM et al (2014) Oxygen-selective membranes integrated with oxy-fuel combustion. J Membr Sci 463:166–172. https://doi.org/10.1016/j.memsci.2014.03.063 Oncel C, Gulgun MA (2017) Preventing of LaNiO3 Formation at the LSGM-NiO Interface via LDC Protective Layer and Proper Processing Route for Solid Oxide Fuel Cells. The Electrochem Soc 78(1):413–427 Rasmussen JFBB, Hagen A (2009) The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells. J Power Sources 191:534–541. https://doi.org/10.1016/j.jpowsour.2009.02.001 Khan MZ, Mehran MT, Song RH et al (2018) A simplified approach to predict performance degradation of a solid oxide fuel cell anode. J Power Sources 391:94–105. https://doi.org/10.1016/j.jpowsour.2018.04.080 Lussier A, Sofie S, Dvorak J, Idzerda YU (2008) Mechanism for SOFC anode degradation from hydrogen sulfide exposure. Int J Hydrog Energy 33:3945–3951. https://doi.org/10.1016/j.ijhydene.2007.11.033 Lee HS, Lee HM, Park JY, Lim HT (2018) Degradation behavior of Ni-YSZ anode-supported solid oxide fuel cell (SOFC) as a function of H2S concentration. Int J Hydrog Energy 43:22511–22518. https://doi.org/10.1016/j.ijhydene.2018.09.189 Yang L, Cheng Z, Liu MWL (2010) New insights into sulfur poisoning behavior of Ni-YSZ anode from long-term operation of anode-supported SOFCs. Energy Environ Sci 3:1804e9 Li TSWW (2011) Sulfur-poisoned Ni-based solid oxide fuel cell anode characterization by varying water content. J Power Sources 196:2066–2069 Dong J, Cheng Z, Zha S, Liu M (2006) Identification of nickel sulfides on Ni-YSZ cermet exposed to H2 fuel containing H2S using Raman spectroscopy. J Power Sources 156:461–465. https://doi.org/10.1016/j.jpowsour.2005.06.016 Riegraf M, Costa R, Schiller G, Friedrich KA (2017) Sulfur poisoning of Ni/CGO anodes: a long-term degradation study. ECS Trans 78:1285–1291. https://doi.org/10.1149/07801.1285ecst Chan SH, Jiang SP (2004) Development of Ni/Y 2 O 3 – ZrO 2 cermet anodes for solid oxide fuel cells. Mater Sci Technol 20:1109–1118 Gasper P, Lu Y, Basu SN et al (2019) Effect of anodic current density on the spreading of infiltrated nickel nanoparticles in nickel-yttria stabilized zirconia cermet anodes. J Power Sources 410–411:196–203. https://doi.org/10.1016/j.jpowsour.2018.11.002 Li M, Hua B, Jiang SP, Li J (2017) Coke resistant and sulfur tolerant Ni-based cermet anodes for solid oxide fuel cells. ECS Trans 78:1217–1228. https://doi.org/10.1149/07801.1217ecst Amiri S, Hayes RE, Sarkar P (2019) Evolution of electronic conductivity in a Ni/YSZ electrode fabricated by electrophoretic deposition. Can J Chem Eng 97:1114–1120. https://doi.org/10.1002/cjce.23339 Iwanschitz B, Sfeir J, Mai A, Schütze M (2010) Degradation of SOFC Anodes upon redox cycling: a comparison between Ni/YSZ and Ni/CGO. J Electrochem Soc 157:B269–B278. https://doi.org/10.1149/1.3271101 Pihlatie MH, Kaiser A, Mogensen M, Chen M (2011) Electrical conductivity of Ni-YSZ composites: degradation due to Ni particle growth. Solid State Ionics 189:82–90. https://doi.org/10.1016/j.ssi.2011.02.001 Jiao Z, Shikazono N (2018) In operando optical study of active three phase boundary of nickel-yttria stabilized zirconia solid-oxide fuel cell anode under polarization. J Power Sources 396:119–123. https://doi.org/10.1016/j.jpowsour.2018.06.001 Bertei A, Ruiz-Trejo E, Kareh K et al (2017) The fractal nature of the three-phase boundary: a heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes. Nano Energy 38:526–536. https://doi.org/10.1016/j.nanoen.2017.06.028 Zekri A, Herbrig K, Knipper M et al (2017) Nickel depletion and agglomeration in SOFC anodes during long-term operation. Fuel Cells 17:359–366. https://doi.org/10.1002/fuce.201600220 Hauch A, Brodersen K, Chen M, Mogensen MB (2016) Ni / YSZ electrodes structures optimized for increased electrolysis performance and durability. Solid State Ionics 293:27–36. https://doi.org/10.1016/j.ssi.2016.06.003 Mah JCW, Muchtar A, Somalu MR, Ghazali MJ (2017) Metallic interconnects for solid oxide fuel cell : A review on protective coating and deposition techniques. Int J Hydrogen Energy 42(14):9219–9229 Yuan K, Yu Y, Wu Y et al (2018) Plasma sprayed coatings for low-temperature SOFC and high temperature effects on Lix(Ni,Co)yO2 catalyst layers. Int J Hydrog Energy 43:12782–12788. https://doi.org/10.1016/j.ijhydene.2018.03.215 Suboti V, Schluckner C, Stoeckl B et al (2018) Towards practicable methods for carbon removal from Ni-YSZ anodes and restoring the performance of commercial-sized ASC-SOFCs after carbon deposition induced degradation. Energy Convers Manag 178:343–354. https://doi.org/10.1016/j.enconman.2018.10.022 Oncel C, Gulgun MA (2017) Preventing of LaNiO 3 formation at the LSGM-NiO interface via LDC protective layer and proper processing route for solid oxide fuel cells. Electrochem Soc 78:413–427 Kikuchi Y, Matsuda J, Tachikawa Y et al (2017) Degradation of SOFCs by various impurities: impedance spectroscopy and microstructural analysis. ECS Trans 78:1253–1260. https://doi.org/10.1149/07801.1253ecst Falk-Windisch H, Mertzidis I, Svensson JE, Froitzheim J (2015) Pre-coated Ce/Co-coated Steel: Mitigating Cr Vaporization, Increasing Corrosion Resistance at Competitive Cost. ECS Trans 68(1):1617–1623 Liu JW, Liu X (2010) Recent development of SOFC metallic interconnect. J Mater Sci Technol 26:293–305 Piccardo P, Amendola R, Fontana S et al (2009) Interconnect materials for next-generation solid oxide fuel cells. J Appl Electrochem 39:545–551. https://doi.org/10.1007/s10800-008-9743-8 Zhu WZ, Deevi SC (2003) Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A 348:227–243. https://doi.org/10.1016/S0921-5093(02)00736-0 Fergus JW (2005) Metallic interconnects for solid oxide fuel cells. Mater Sci Eng A 397:271–283. https://doi.org/10.1016/j.msea.2005.02.047 Chen Z, Wang L, Li F, Chou K (2014) Thermodynamic analysis of the corrosion of Fe-16Cr alloy interconnect of solid oxide fuel cell under various atmospheres. High Temp Mater Process 33:439–445. https://doi.org/10.1515/htmp-2013-0104 Huan Y, Fan Y, Li Y et al (2018) Systematic effect of contaminations on IT-SOFCs cathode stability: a quantifiable correlation: versus cathode-side poisoning and protection. J Mater Chem A 6:5172–5184. https://doi.org/10.1039/c8ta00658j Horita T, Yamaji K, Xiong Y, Haruo Kishimoto NS, Yokokawa H (2004) Oxide scale formation of Fe–Cr alloys and oxygen diffusion in the scale. Solid State Ionics 175:157–163 Goebel C, Alnegren P, Faust R, Svensson J, Froitzheim J (2018) The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere. Int J Hydrogen Energy 43(31):14665–14674 Zeng Z, Natesan K (2003) Relationship of carbon crystallization to the metal-dusting mechanism of nickel. Chem Mater 15:872–878 Falk-Windisch H, Ioannis Mertzidis J-ES, Froitzhem J (2015) Pre-coated Ce/Co-coated steel: mitigating Cr vaporization, increasing corrosion resistance at competitive cost. ECS Trans 68:1617–1623 Folgner C, Sauchuk V, Megel S, Kusnezoff M, Mechaelis A (2017) Interconnect corrosion in steam containing fuel gas. ECS Trans 78:1543–1558 Szymczewska D, Molin S, Chen M et al (2017) Corrosion study of ceria protective layer deposited by spray pyrolysis on steel interconnects. Ceram Eng Sci Proc 37:79–86. https://doi.org/10.1002/9781119320197.ch7 Talic B, Molin S, Wiik K, Hendriksen PV, Lein HL (2017) Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects. J Power Sources 372(31):145–156 Oum M, Andrews J, Steinberger-Wilckens R (2017) Modelling microstructural and chemical degradation of ferritic stainless steels for SOFC interconnects. Electrochem Soc 78:1565–1574 Alnegren P, Froitzheim J, Svensson J (2013) Degradation of ferritic steel interconnects in SOEC environments. Electrochem Soc 57:2261–2270 Quadakkers WJ, Piron-Abellan J, Shemet V, Singheiser L (2003) Metallic interconnectors for solid oxide fuel cells—a review. Mater High Temp 20:115–127. https://doi.org/10.3184/096034003782749071 Alnegren P, Sattari M, Svensson J, Froitzheim J (2018) Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600–800 ° C. J Power Sources 392:129–138. https://doi.org/10.1016/j.jpowsour.2018.04.088 Goebel C, Alnegren P, Faust R et al (2018) The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere. Int J Hydrog Energy 43:14665–14674. https://doi.org/10.1016/j.ijhydene.2018.05.165 Shaigan N, Qu W, Ivey DG, Chen W (2010) A review of recent progress in coatings , surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Power Sources 195:1529–1542. https://doi.org/10.1016/j.jpowsour.2009.09.069 Stevenson JW, Yang ZG, Xia GG et al (2013) Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. J Power Sources 231:256–263. https://doi.org/10.1016/j.jpowsour.2013.01.033 Mehran MT, Song R-H, Lee J-W et al (2017) Nano-oxide dispersed ferritic stainless steel for metallic interconnects of solid oxide fuel cells. ECS Trans 78:1575–1582. https://doi.org/10.1149/07801.1575ecst Molin S (2018) Evaluation of electrodeposited Mn-Co protective coatings on Crofer 22 APU steel. Int J Appl Ceram Technol 15:349–360. https://doi.org/10.1111/ijac.12816 Talic B, Molin S, Wiik K et al (2017) Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects. J Power Sources 372:145–156. https://doi.org/10.1016/j.jpowsour.2017.10.060 Molin S, Sabato AG, Javed H et al (2018) Co-deposition of CuO and Mn 1.5 Co 1.5 O 4 powders on Crofer22APU by electrophoretic method: structural, compositional modifications and corrosion properties. Mater Lett 218:329–333. https://doi.org/10.1016/j.matlet.2018.02.037 Thaheem I, Woo D, Noh T, Lee TK (2018) Highly conductive and stable Mn1.35Co1.35Cu0.2Y0.1O4 spinel protective coating on commercial ferritic stainless steels for intermediate-temperature solid oxide fuel cell interconnect applications. Int J Hydrogen Energy 44(8):2493–4303 Froitzheim J, Canovic S, Nikumaa M, Sachitanand R, Johansson LG, Svensson JE (2012) Long term study of Cr evaporation and high temperature corrosion behaviour of Co coated ferritic steel for solid oxide fuel cell interconnects. J Power Sources 220:217–227 Canovic S, Froitzheim J, Sachitanand R et al (2013) Surface & coatings technology oxidation of Co- and Ce-nanocoated FeCr steels : a microstructural investigation. Surf Coat Technol 215:62–74. https://doi.org/10.1016/j.surfcoat.2012.08.096 Ananyev MV, Solodyankin AA, Eremin VA, Farlenkov AS, Khodimchuk AV, Fetsov AV, Chernik AA, Yaskelychik AA, Ostanina TA, Zaikov YP (2018) Protective Coatings La – Mn – Cu – O for Stainless-Steel Interconnector 08Х17Т for SOFC , Obtained by the Electrocrystallization Method from Non-Aqueous Solutions. Russian Journal of nonferrous metals 59:102–110 He H, Benhaddad S, Steedman D, Chen C, Krivy M (2017) MCO-coated interconnects for mitigation of Cr-poisoning in solid oxide fuel cells. Electrochem Soc 78:1583–1590 Sachitanand R, Sattari M, Svensson JE, Froitzheim J (2013) Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. Int J Hydrogen Energy 38(35):15328–15334 Unal FA, Mat MD, Demir I et al (2015) Application of a coating mixture for solid oxide fuel cell interconnects. Int J Hydrog Energy 40:7689–7693. https://doi.org/10.1016/j.ijhydene.2015.03.031 Molin S, Jasinski P, Mikkelsen L et al (2016) Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C. J Power Sources 336:408–418. https://doi.org/10.1016/j.jpowsour.2016.11.011 Gannon P, Deibert M, White P, Smith R, Chen H, Priyantha W, Lucas J, Gorokhovsky V (2008) Advanced PVD protective coatings for SOFC interconnects. Int J Hydrogen Energy 33(14):3991–4000 Zhu J, Lin Z (2018) Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions. Applied Energy 231:22–28 Masi A, Frangini S, Carlini M, Masci A, McPhail J, Stephen (2015) Evaluation of a Novel Perovskite-Based Conversion Coating for Corrosion Protection of 13Cr Ferritic Stainless Steels under Relevant SOFC Oxidizing Conditions. ECS Trans volume MA2015-03, A-SOFC XIV Froitzheim J, Canovic S, Nikumaa M et al (2012) Long term study of Cr evaporation and high temperature corrosion behaviour of Co coated ferritic steel for solid oxide fuel cell interconnects. J Power Sources 220:217–227. https://doi.org/10.1016/j.jpowsour.2012.06.092 Kidner NJ, Ibanez S, Seabaugh MM, Swartz SL (2017) Advances in Low Temperature Coatings for Solid Oxide Fuel Cell Components. Fuelcellmaterials.com Ananyev MV, Solodyankin AA, Eremin VA, Farlenkov AS (2018) Protective coatings La – Mn – Cu – O for stainless-steel interconnector 08Х17Т for SOFC, obtained by the electrocrystallization method from non-aqueous solutions. Corros Prot Met 59:102–110. https://doi.org/10.3103/S1067821218010029 Dessemond L, Djurado E, Muccillo ENS (2014) La0.7Sr0.3MnO3 − δ barrier for Cr2O3-forming SOFC interconnect alloy coated by electrostatic spray deposition. Surf Coat Technol 254:157–166 Sachitanand R, Sattari M, Svensson JE, Froitzheim J (2013) Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. Int J Hydrog Energy 38:15328–15334. https://doi.org/10.1016/j.ijhydene.2013.09.044 Huang K, Hou PY, Goodenough JB (2000) Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells. Solid State Ionics 129:237–250. https://doi.org/10.1016/S0167-2738(99)00329-X Grünwald N, Sebold D, Sohn YJ et al (2017) Self-healing atmospheric plasma sprayed Mn1.0Co1.9Fe0.1O4 protective interconnector coatings for solid oxide fuel cells. J Power Sources 363:185–192. https://doi.org/10.1016/j.jpowsour.2017.07.072 Gannon P, Deibert M, White P et al (2008) Advanced PVD protective coatings for SOFC interconnects. Int J Hydrog Energy 33:3991–4000. https://doi.org/10.1016/j.ijhydene.2007.12.009 Zhu J, Lin Z (2018) Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions. Appl Energy 231:22–28. https://doi.org/10.1016/j.apenergy.2018.09.127 Amendola R, Gannon PE, Sofie SW, Weisenstein AJ (2012) Interactions between metallic interconnects and ceramic electrodes in SOFC operating environments: air side. J Electrochem Soc 159:C476–C484. https://doi.org/10.1149/2.064211jes Dessemond L, Djurado E, Muccillo ENS (2014) Surface & coatings technology coated by electrostatic spray deposition. Surf Coat Technol 254:157–166. https://doi.org/10.1016/j.surfcoat.2014.06.005 Ma J, Duan N, Han Y, Li P, Zhu B, Yan D, Chi B, Pu J, Li J (2019) Hot corrosion of yttria-stabilized zirconia by liquid antimony and antimony oxide. J Power Sources 434:226764 Stange M, Denonville C, Larring Y et al (2017) Improvement of corrosion properties of porous alloy supports for solid oxide fuel cells. Int J Hydrog Energy 42:12485–12495. https://doi.org/10.1016/j.ijhydene.2017.03.170 Zhong Z (2007) Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems. Solid State Ionics 178(3-4):213–220 Karczewski J, Dunst KJ, Jasinski P, Molin S (2015) Surface & coatings technology high temperature corrosion and corrosion protection of porous Ni22Cr alloys. Surf Coat Technol 261:385–390. https://doi.org/10.1016/j.surfcoat.2014.10.051 Werner A, Skilbred B, Haugsrud R (2011) The effect of dual atmosphere conditions on the corrosion of Sandvik Sanergy HT. Int J Hydrog Energy 37:8095–8101. https://doi.org/10.1016/j.ijhydene.2011.10.096 Bianco M, Tallgren J, Hong J et al (2019) Ex-situ experimental benchmarking of solid oxide fuel cell metal interconnects. J Power Sources 437:226900. https://doi.org/10.1016/j.jpowsour.2019.226900 Ma J, Duan N, Han Y et al (2019) Hot corrosion of yttria-stabilized zirconia by liquid antimony and antimony oxide. J Power Sources 434:226764. https://doi.org/10.1016/j.jpowsour.2019.226764 Yokokawa H, Kishimoto H, Shimonosono T, Yamaji K, Muramatsu M, Terada K, Yashiro K (2017) Simulation Technology on SOFC Durability with an Emphasis on Conductivity Degradation of ZrO2-base Electrolyte. J Electrochem Energy Conservation and Storage. 14(1):011004 Nechache A, Boukamp BA, Cassir M, Ringuedé A (2019) Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis. J Solid State Electrochem 23:871–881 Cao T, Cheng Y, Gorte RJ, Shi Y, Vohs M, Cai N (2017) Effect of grain boundary diffusion on electrolyte stability indirect carbon fuel cells with antimony anodes. Ceram Int. 43(18):16575–16579 Nechache A, Boukamp BA, Cassir M, Ringuedé A (2019) Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis. J Solid State Electrochem 23:871–881 Cao T, Cheng Y, Gorte RJ, et al (2017) Effect of grain boundary di ff usion on electrolyte stability in direct carbon fuel cells with antimony anodes. Ceram Int 0–1. https://doi.org/10.1016/j.ceramint.2017.09.045 Haanappel VAC, Duran A, Rodriguez-Lopez S et al (2016) Glass-ceramic seals in the system MgO e BaO-B2O3-SiO2 operating under simulated SOFC conditions. Int J Hydrog Energy 1:15335–15345. https://doi.org/10.1016/j.ijhydene.2016.07.051 Sabato AG, Chrysanthou A, Salvo M et al (2018) Interface stability between bare , Mn - Co spinel coated AISI 441 stainless steel and a diopsidebased glass-ceramic sealant. Int J Hydrogen Energy 43(3):1824–1834 Hasanabadi MF, Kokabi AH, Nemati A, Ajabshir SZ (2017) Interactions near the triple-phase boundaries metal / glass / air in planar solid oxide fuel cells. Int J Hydrog Energy 42:5306–5314. https://doi.org/10.1016/j.ijhydene.2017.01.065 Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells – A review. Materials Science and Engineering:R: Reports 67(5-6):65–85 Bram M, Niewolak L, Shah N et al (2011) Interaction of sealing material mica with interconnect steel for solid oxide fuel cells application at 600 ° C. J Power Sources 196:5889–5896. https://doi.org/10.1016/j.jpowsour.2011.02.086 Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells—a review. Mater Sci Eng A 67:65–85. https://doi.org/10.1016/j.mser.2009.12.002 Amarnath A, Tulyaganov DU, Goel A et al (2012) Diopside-Mg orthosilicate and diopside-Ba disilicate glass- ceramics for sealing applications in SOFC : Sintering and chemical interactions studies. Int J Hydrog Energy 7:12528–12539. https://doi.org/10.1016/j.ijhydene.2012.05.130 Rautanen M, Thomann O, Himanen O et al (2014) Glass coated compressible solid oxide fuel cell seals. J Power Sources 247:243–248. https://doi.org/10.1016/j.jpowsour.2013.08.085 Thomann O, Rautanen M, Himanen O et al (2015) Post-experimental analysis of a solid oxide fuel cell stack using hybrid seals. J Power Sources 274:1009–1015. https://doi.org/10.1016/j.jpowsour.2014.10.100 Fergus JW (2005) Sealants for solid oxide fuel cells. J Power Sources 147:46–57. https://doi.org/10.1016/j.jpowsour.2005.05.002 Hsu J, Kim C, Brow RK et al (2014) An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells. J Power Sources 270:14–20. https://doi.org/10.1016/j.jpowsour.2014.07.088 Smeacetto F, Salvo M, Leone P et al (2011) Performance and testing of joined Crofer22APU-glass-ceramic sealant-anode supported cell in SOFC relevant conditions. Mater Lett 65:1048–1052. https://doi.org/10.1016/j.matlet.2010.12.050 Smeacetto F, De Miranda A, Chrysanthou A et al (2014) Novel glass-ceramic composition as sealant for SOFCs. J Am Ceram Soc 8:1–8. https://doi.org/10.1111/jace.13219 Choi JP, Weil KS, Chou YM et al (2010) Development of MnCoO coating with new aluminizing process for planar SOFC stacks. Int J Hydrog Energy 36:4549–4556. https://doi.org/10.1016/j.ijhydene.2010.04.110 Kiebach R, Agersted K, Zielke P, Ritucci I, Brock MB, Hendriksen PV (2017) A novel SOFC/SOEC sealing glass with a low SiO2 content and a high thermal expansion coefficient. Electrochem Soc 78:1739–1747 Singh RN (2007) Sealing technology for solid oxide fuel cells ( SOFC ). Int J Appl Ceram Technol 4:134–144 Kiebach R, Engelbrecht K, Grahl-madsen L et al (2016) An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells. J Power Sources 315:339–350. https://doi.org/10.1016/j.jpowsour.2016.03.030 Si X, Cao J, Ritucci I et al (2018) Enhancing the long-term stability of Ag based seals for solid oxide fuel / electrolysis applications by simple interconnect aluminization. Int J Hydrog Energy 44:3063–3074. https://doi.org/10.1016/j.ijhydene.2018.11.071 Almar AL, Morata A, Torrell M, Gong M, Liu M, Tarancon A (2017) A Durable Electrode for Solid Oxide Cells: Mesoporous Ce0.8Sm0.2O1.9 Scaffolds Infiltrated with a Sm0.5Sr0.5CoO3-δ Catalyst. Electrochim Acta. 235:646–653 da Silva FS, de Souza TM (2017) Novel materials for solid oxide fuel cell technologies: A literature review. Int J Hydrogen Energy 42(41):26020–26036 da Silva FS, de Souza TM (2017) Novel materials for solid oxide fuel cell technologies: a literature review. Int J Hydrog Energy 42:26020–26036. https://doi.org/10.1016/j.ijhydene.2017.08.105 Park B, Song R, Lee S et al (2017) Conformal bi-layered perovskite / spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route. J Power Sources 348:40–47. https://doi.org/10.1016/j.jpowsour.2017.02.080 Sharma DK, Filipponi M, Di Schino A, Rossi F, Castaldi J (2019) Corrosion Behaviour Of High Temperature Fuel Cells : Issues For Materials Selection. Croatian Metallurgical Society 58(3-4):347–351 Afroze S, Karim A, Cheok Q, Sten E, Azad AK (2019) Latest development of double perovskite electrode materials for solid oxide fuel cells : a review. Frontiers in Energy 13:770–797 Ahn M, Han S, Lee J, Lee W (2020) Electrospun composite nano fibers for intermediate-temperature solid oxide fuel cell electrodes. Ceram Int. 46(5):6006–6011 Kaur P, Singh K (2020) Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceram Int 46(5):5521–5535 Li J, Wang C, Wang X et al (2020) Sintering aids for proton-conducting oxides- A double edged sword? A mini review. Electrochem commun. 112:106672 Xu X, Wang C, Fronzi M, Liu X, Bi L, Zhao XS (2019) Modification of a first ‑ generation solid oxide fuel cell cathode with Co3O4 nanocubes having selectively exposed crystal planes. Mater Renew Sustain Energy 8(15):1–8 Xu X, Wang C, Fronzi M et al (2019) Modification of a first - generation solid oxide fuel cell cathode with Co 3 O 4 nanocubes having selectively exposed crystal planes. Mater Renew Sustain Energy 8:1–8. https://doi.org/10.1007/s40243-019-0154-z Andrade G, Vı J, Mu FJ et al (2018) Advances in the development of titanates for anodes in SOFC. Int J Hydrog Energy 5:1–14. https://doi.org/10.1016/j.ijhydene.2018.05.171 Timurkutluk B, Dokuyucu S, Onbilgin S (2020) Novel structured anode-supported solid oxide fuel cells with porous GDC interlayers. Ceram Int 46(8):Part A:11066–Part A:11074 Wang W, Qu J, Julião PSB, Shao Z (2017) Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels: a mini review. Energy Technology 7(1):33–44 Wan Y, Xing Y, Xie Y, Xu J, Xia C (2019) Vanadium Doped Strontium Molybdate with Exsolved Ni Nanoparticles as Anode Material for Solid Oxide Fuel Cells. ACS Appl Mater Interfaces 11(45):42271–42279 Raza R, Zhu B, Ra A et al (2020) Functional ceria-based nanocomposites for advanced low- temperature ( 300 -- 600 C ) solid oxide fuel cell : A comprehensive review. Mater today energy. https://doi.org/10.1016/j.mtener.2019.100373 Zakaria Z, Hasmady S, Hassan A, Shaari N (2019) A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. Int J Energy Res 48(22):631–650 Pikalova EY, Kalinina EG (2019) Electrophoretic deposition in the solid oxide fuel cell technology : Fundamentals and recent advances. Renew Sustain Energy Rev 116:109440 Pikalova EY, Kalinina EG (2019) Electrophoretic deposition in the solid oxide fuel cell technology : fundamentals and recent advances. Renew Sust Energ Rev 116:109440. https://doi.org/10.1016/j.rser.2019.109440 Khan MZ, Song R, Lee S, Lim T (2019) Development of oxide dispersed ferritic steel as a solid oxide fuel cell interconnect. ECS Trans 19:2307–2312. https://doi.org/10.1149/09101.2307ecst Goebel C, Berger R, Bernuy-lopez C et al (2019) Long-term ( 4 year ) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications. J Power Sources. 449:227480 Goebel C, Berger R, Bernuy-lopez C et al (2019) Long-term ( 4 year ) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications. J Power Sources. https://doi.org/10.1016/j.jpowsour.2019.227480 Yoon H, Kim T, Park S, Mark N (2017) Stable LSM / LSTM bi-layer interconnect for flat-tubular solid oxide fuel cells. Int J Hydrogen Energy 1–10. https://doi.org/10.1016/j.ijhydene.2017.11.024 Kolisetty A, Fu Z, Koc R (2017) Development of La(CrCoFeNi)O3 system perovskites as interconnect and cathode materials for solid oxide fuel cells. Ceram Int 3. https://doi.org/10.1016/j.ceramint.2017.03.061 Krainova DA, Saetova NS, Kuzmin A V, et al (2019) Non-crystallising glass sealants for SOFC: effect of Y 2 O 3 addition. Ceram Int 266. https://doi.org/10.1016/j.ceramint.2019.10.266 Saetova NS, Krainova DA, Kuzmin AV, Raskovalov AA (2018) Alumina – silica glass – ceramic sealants for tubular solid oxide fuel cells. J Mater Sci. https://doi.org/10.1007/s10853-018-3181-8 Rost A, Kusnezoff M, Megel S, Michaelis A (2017) Glass ceramics sealants for SOFC interconnects based on a high chromium sinter alloy. Int J Appl Ceram Technol 239–254. https://doi.org/10.1111/ijac.12811 Timurkutluk B, Altan T, Celik S, Palaci Y (2019) Glass fiber reinforced sealants for solid oxide fuel cells. Int J Hydrogen Energy 44(33):18308–18318 Timurkutluk B, Altan T, Celik S (2019) Glass fiber reinforced sealants for solid oxide fuel cells. Int J Hydrog Energy 44:18308–18318. https://doi.org/10.1016/j.ijhydene.2019.05.116 Damo UM, Ferrari ML, Turan A, Massardo AF (2019) Solid oxide fuel cell hybrid system : a detailed review of an environmentally clean and ef fi cient source of energy. Energy 168:235–246. https://doi.org/10.1016/j.energy.2018.11.091 Tai XY, Zhakeyev A, Wang H et al (2019) Accelerating Fuel Cell Development with Additive Manufacturing Technologies : State of the Art, Opportunities and Challenges. Fuel Cells 19(6):636–650 Chueh C, Bertei A, Nicolella C (2019) Design guidelines for the manufacturing of the electrode-electrolyte interface of solid oxide fuel cells. J Power Sources 437:226888 Chueh C, Bertei A, Nicolella C (2019) Design guidelines for the manufacturing of the electrode-electrolyte interface of solid oxide fuel cells. J Power Sources 437:226888. https://doi.org/10.1016/j.jpowsour.2019.226888