An overview of COVID-19

Journal of Zhejiang University-SCIENCE B - Tập 21 Số 5 - Trang 343-360 - 2020
Yu Shi1, Wang Gang1, Xiao peng Cai1, Jing Deng1, Lin Zheng2, Hai Zhu1, Min Zheng1, Bo Yang2, Zhi Chen3
1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
2School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
3Health Policy and Hospital Management Research Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agostini ML, Andres EL, Sims AC, et al., 2018. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio, 9(2):e00221–18. https://doi.org/10.1128/mBio.00221-18

Al-Tawfiq JA, Alfaraj SH, Altuwaijri TA, et al., 2017. A cohort-study of patients suspected for MERS-CoV in a referral hospital in Saudi Arabia. J Infect, 75(4):378–379. https://doi.org/10.1016/j.jinf.2017.06.002

Arabi Y, Balkhy H, Hajeer AH, et al., 2015. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. SpringerPlus, 4:709. https://doi.org/10.1186/s40064-015-1490-9

Asselah T, Benhamou Y, Marcellin P, 2009. Protease and polymerase inhibitors for the treatment of hepatitis C. Liver Int, 29(S1):57–67. https://doi.org/10.1111/j.1478-3231.2008.01928.x

Badgett MR, Auer A, Carmichael LE, et al., 2002. Evolutionary dynamics of viral attenuation. J Virol, 76(20):10524–10529. https://doi.org/10.1128/jvi.76.20.10524-10529.2002

Bao YP, Sun YK, Meng SQ, et al., 2020. 2019-nCoV epidemic: address mental health care to empower society. Lancet, 395(10224):E37–E38. https://doi.org/10.1016/s0140-6736(20)30309-3

Brown AJ, Won JJ, Graham RL, et al., 2019. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res, 169:104541. https://doi.org/10.1016/j.antiviral.2019.104541

Ceraolo C, Giorgi FM, 2020. Genomic variance of the 2019-nCoV coronavirus. J Med Virol, 92(5):522–528. https://doi.org/10.1002/jmv.25700

Chan JFW, Yuan SF, Kok KH, et al., 2020a. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223):514–523. https://doi.org/10.1016/S0140-6736(20)30154-9

Chan JFW, Kok KH, Zhu Z, et al., 2020b. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect, 9(1):221–236. https://doi.org/10.1080/22221751.2020.1719902

Chen HJ, Guo JJ, Wang C, et al., 2020. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet, 395(10226):809–815. https://doi.org/10.1016/s0140-6736(20)30360-3

Chen LJ, Liu WY, Zhang Q, et al., 2020. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect, 9(1):313–319. https://doi.org/10.1080/22221751.2020.1725399

Chen NS, Zhou M, Dong X, et al., 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395(10223):507–513. https://doi.org/10.1016/s0140-6736(20)30211-7

Chu CM, Cheng VCC, Hung IFN, et al., 2004. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 59(3):252–256. https://doi.org/10.1136/thorax.2003.012658

Cui HZ, Gao ZY, Liu M, et al., 2020. Structural genomics and interactomics of 2019 Wuhan novel coronavirus, 2019-nCoV, indicate evolutionary conserved functional regions of viral proteins. bioRxiv, preprint. https://doi.org/10.1101/2020.02.10.942136

Cui QH, Huang CB, Ji XW, et al., 2020. Possible inhibitors of ACE2, the receptor of 2019-nCoV. Preprints, 2020020047. https://doi.org/10.20944/Preprints202002.0047.V1

Cyranoski D, 2020. When will the coronavirus outbreak peak? Nature, Feb. 18, 2020. https://doi.org/10.1038/d41586-020-00361-5

de Wit E, van Doremalen N, Falzarano D, et al., 2016. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol, 14(8):523–534. https://doi.org/10.1038/nrmicro.2016.81

Dong N, Yang XM, Ye LM, et al., 2020. Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. bioRxiv, preprint. https://doi.org/10.1101/2020.01.20.913368

Drosten C, Günther S, Preiser W, et al., 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 348(20):1967–1976. https://doi.org/10.1056/NEJMoa030747

Fan W, Yang C, Cui M, 2020. The first doctor to report the epidemic: “I realized that something was wrong and I started to prepare.” people.cn. http://society.people.com.cn/n1/2020/0207/c1008-31575058.html [Accessed on Feb. 28, 2020] (in Chinese).

Fang Q, 2020. Nan-shan ZHONG’s team isolated neocoronavirus from a patient’s urine specimen. Guangzhou Daily. https://gzdaily.dayoo.com/pc/html/2020-02/23/content_127574_683801.htm [Accessed on Feb. 28, 2020] (in Chinese).

Favre G, Pomar L, Musso D, et al., 2020. 2019-nCoV epidemic: what about pregnancies. Lancet, 389(10224):E40. https://doi.org/10.1016/s0140-6736(20)30311-1

Gallagher TM, Buchmeier MJ, 2001. Coronavirus spike proteins in viral entry and pathogenesis. Virology, 279(2):371–374. https://doi.org/10.1006/viro.2000.0757

Gao S, Song SQ, Zhang LL, 2019. Recent progress in vaccine development against chikungunya virus. Front Microbiol, 10:2881. https://doi.org/10.3389/fmicb.2019.02881

General Office of National Health Commission of the People’s Republic of China, 2020. Diagnosis and treatment for novel coronavirus (Version 5). http://www.nhc.gov.cn/xcs/zhengcwj/202002/3b09b894ac9b4204a79db5b8912d4440.shtml [Accessed on Feb. 28, 2020] (in Chinese).

Guan WJ, Ni ZY, Hu Y, et al., 2020. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, in press. https://doi.org/10.1056/NEJMoa2002032

Guo Q, Li M, Wang CH, et al., 2020. Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv, preprint. https://doi.org/10.1101/2020.01.21.914044

He YX, Jiang SB, 2005. Vaccine design for severe acute respiratory syndrome coronavirus. Viral Immunol, 18(2):327–332. https://doi.org/10.1089/vim.2005.18.327

Heurich A, Hofmann-Winkler H, Gierer S, et al., 2014. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol, 88(2):1293–1307. https://doi.org/10.1128/JVI.02202-13

Hoffmann M, Kleine-Weber H, Krüger N, et al., 2020. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv, preprint. https://doi.org/10.1101/2020.01.31.929042

Hofmann H, Pöhlmann S, 2004. Cellular entry of the SARS coronavirus. Trends Microbiol, 12(10):466–472. https://doi.org/10.1016/j.tim.2004.08.008

Huang CL, Wang YM, Li XW, et al., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

Huang Q, Herrmann A, 2020. Fast assessment of human receptor-binding capability of 2019 novel coronavirus (2019-nCoV). bioRxiv, preprint. https://doi.org/10.1101/2020.02.01.930537

Jaimes JA, André NM, Millet JK, et al., 2020. Structural modeling of 2019-novel coronavirus (nCoV) spike protein reveals a proteolytically-sensitive activation loop as a distinguishing feature compared to SARS-CoV and related SARS-like coronaviruses. bioRxiv, preprint. https://doi.org/10.1101/2020.02.10.942185

Ji W, Wang W, Zhao XF, et al., 2020. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J Med Virol, 92(4):433–440. https://doi.org/10.1002/jmv.25682

Jiang SB, Shi ZL, 2020. The first disease X is caused by a highly transmissible acute respiratory syndrome coronavirus. Virol Sin, in press. https://doi.org/10.1007/s12250-020-00206-5

Jin YH, Cai L, Cheng ZS, et al., 2020. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res, 7(1):4. https://doi.org/10.1186/s40779-020-0233-6

King AMQ, Adams MJ, Carstens EB, et al., 2012. Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, USA, p.770–783.

Kong LH, 2020. South China Agricultural University: pangolin maybe the intermediate host for new coronavirus. people.cn. http://bj.people.com.cn/n2/2020/0208/c14540-33775751.html [Accessed on Feb. 28, 2020] (in Chinese).

Ksiazek TG, Erdman D, Goldsmith CS, et al., 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 348(20):1953–1966. https://doi.org/10.1056/NEJMoa030781

Lam TTY, Shum MHH, Zhu HC, et al., 2020. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature, in press. https://doi.org/10.1038/s41586-020-2169-0

Lan J, Ge JW, Yu JF, et al., 2020. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. bioRxiv, preprint. https://doi.org/10.1101/2020.02.19.956235

Lefkowitz EJ, Dempsey DM, Hendrickson RC, et al., 2018. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res, 46(D1):D708–D717. https://doi.org/10.1093/nar/gkx932

Leonard JN, Schaffer DV, 2006. Antiviral RNAi therapy: emerging approaches for hitting a moving target. Gene Ther, 13(6):532–540. https://doi.org/10.1038/sj.gt.3302645

Li CKF, Xu XN, 2010. Host immune responses to SARS coronavirus in humans. In: Lal SK (Ed.), Molecular Biology of the SARS-Coronavirus. Springer, Berlin, Heidelberg, p.259–278. https://doi.org/10.1007/978-3-642-03683-5_16

Li F, 2016. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol, 3(1):237–261. https://doi.org/10.1146/annurev-virology-110615-042301

Li F, Li WH, Farzan M, et al., 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309(5742):1864–1868. https://doi.org/10.1126/science.1116480

Li GD, de Clercq E, 2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Dis, 19(3):149–150. https://doi.org/10.1038/d41573-020-00016-0

Li Q, Guan XH, Wu P, et al., 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med, 382(13):1199–1207. https://doi.org/10.1056/NEJMoa2001316

Liu P, Chen W, Chen JP, 2019. Viral metagenomics revealed Sendai virus and coronavirus infection of Malayan Pangolins (Manis javanica). Viruses, 11(11):979. https://doi.org/10.3390/v11110979

Lou ZY, Sun Y, Rao ZH, 2014. Current progress in antiviral strategies. Trends Pharmacol Sci, 35(2):86–102. https://doi.org/10.1016/j.tips.2013.11.006

Loutfy MR, Blatt LM, Siminovitch KA, et al., 2003. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA, 290(24):3222–3228. https://doi.org/10.1001/jama.290.24.3222

Lu RJ, Zhao X, Li J, et al., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224):565–574. https://doi.org/10.1016/s0140-6736(20)30251-8

Meng T, Cao H, Zhang H, et al., 2020. The insert sequence in SARS-CoV-2 enhances spike protein cleavage by TMPRSS. bioRxiv, preprint. https://doi.org/10.1101/2020.02.08.926006

Millet JK, Whittaker GR, 2015. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res, 202:120–134. https://doi.org/10.1016/j.virusres.2014.11.021

Mulangu S, Davey RT Jr., Mbaya OT, et al., 2019. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med, 381(24):2293–2303. https://doi.org/10.1056/NEJMoa1910993

Munster VJ, Koopmans M, van Doremalen N, et al., 2020. A novel coronavirus emerging in China—key questions for impact assessment. N Engl J Med, 382(8):692–694. https://doi.org/10.1056/NEJMp2000929

Patick AK, Potts KE, 1998. Protease inhibitors as antiviral agents. Clin Microbiol Rev, 11(4):614–627. https://doi.org/10.1128/cmr.1L4.614

Plotkin SA, 2005. Vaccines: past, present and future. Nat Med, 11(4):S5–S11. https://doi.org/10.1038/nm1209

Razzaque MS, Taguchi T, 2003. Pulmonary fibrosis: cellular and molecular events. Pathol Int, 53(3):133–145. https://doi.org/10.1046/j.1440-1827.2003.01446.X

Rothe C, Schunk M, Sothmann P, et al., 2020. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New Engl J Med, 382(10):970–971. https://doi.org/10.1056/NEJMc2001468

Sheahan TP, Sims AC, Leist SR, et al., 2020. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun, 11:222. https://doi.org/10.1038/s41467-019-13940-6

Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association, 2020. An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19). Chin J Epidemiol, 41(2):139–144 (in Chinese). https://doi.org/10.3760/cma.jissn.0254-6450.2020.02.002

Stauffer F, El-Bacha T, da Poian AT, 2006. Advances in the development of inactivated virus vaccines. Recent Pat Anti-Infect Drug Discov, 1(3):291–296. https://doi.org/10.2174/157489106778777673

ter Meulen J, van den Brink EN, Poon LLM, et al., 2006. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med, 3(7):e237. https://doi.org/10.1371/journal.pmed.0030237

Walls AC, Park YJ, Tortorici MA, et al., 2020. Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 180:281–292. https://doi.org/10.1016/j.cell.2020.02.058

Wang DW, Hu B, Hu C, et al., 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11):1061–1069. https://doi.org/10.1001/jama.2020.1585

Wang M, Cao R, Zhang L, et al., 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 30(3):269–271. https://doi.org/10.1038/s41422-020-0282-0

Watts JK, Corey DR, 2012. Silencing disease genes in the laboratory and the clinic. J Pathol, 226(2):365–379. https://doi.org/10.1002/path.2993

Wax RS, Christian MD, 2020. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anesth/J Can Anesth, 67:568–576. https://doi.org/10.1007/s12630-020-01591-x

World Health Organization, 2020. Coronavirus disease 2019 (COVID-19). Situation Report-55. World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports [Accessed on Mar. 16, 2020].

Wrapp D, Wang N, Corbett KS, et al., 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483):1260–1263. https://doi.org/10.1126/science.abb2507

Wu F, Zhao S, Yu B, et al., 2020. A new coronavirus associated with human respiratory disease in China. Nature, 579(7798):265–269. https://doi.org/10.1038/s41586-020-2008-3

Xie CB, Jiang LX, Huang G, et al., 2020. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. Int J Infect Dis, 93:264–267. https://doi.org/10.1016/j.ijid.2020.02.050

Xinhuanet, 2020. Nan-shan ZHONG’s and Lan-juan LI’s teams isolated the virus from the stools of patients with new coronary pneumonia. Xinhuanet. http://m.xinhuanet.com/hb/2020-02/13/c_1125570909.htm [Accessed on Feb. 28, 2020] (in Chinese).

Xu KJ, Cai HL, Shen YH, et al., 2020. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. J Zhejiang Univ (Med Sci) (in Chinese). https://doi.org/10.3785/j.issn.1008-9292.2020.02.02

Xu XT, Chen P, Wang JF, et al., 2020. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 63(3):457–460. https://doi.org/10.1007/s11427-020-1637-5

Xu XW, Wu XX, Jiang XG, et al., 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ, 368:m606. https://doi.org/10.1136/bmj.m606

Xu Z, Shi L, Wang YJ, et al., 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 8:420–422. https://doi.org/10.1016/s2213-2600(20)30076-x

Yan RH, Zhang YY, Li YN, et al., 2020. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science, 367(6485):1444–1448. https://doi.org/10.1126/science.abb2762

Yang XB, Yu Y, Xu JQ, et al., 2020. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med, 8(4):e26. https://doi.org/10.1016/s2213-2600(20)30079-5

Yang Y, Lu QB, Liu MJ, et al., 2020. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. medRxiv, preprint. https://doi.org/10.1101/2020.02.10.20021675

Young BE, Ong SWX, Kalimuddin S, et al., 2020. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA, 323(15):1488–1494. https://doi.org/10.1001/jama.2020.3204

Zaki AM, van Boheemen S, Bestebroer TM, et al., 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 367(19):1814–1820. https://doi.org/10.1056/NEJMoa1211721

Zhang NR, Jiang SB, Du LY, 2014. Current advancements and potential strategies in the development of MERS-CoV vaccines. Exp Rev Vaccin, 13(6):761–774. https://doi.org/10.1586/14760584.2014.912134

Zhang T, Wu QF, Zhang ZG, 2020. Pangolin homology associated with 2019-nCoV. bioRxiv, preprint. https://doi.org/10.1101/2020.02.19.950253

Zhao HJ, Zhou J, Zhang K, et al., 2016. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci Rep, 6:22008. https://doi.org/10.1038/srep22008

Zhao JC, Perera RAPM, Kayali G, et al., 2015. Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection. J Virol, 89(11):6117–6120. https://doi.org/10.1128/jvi.00446-15

Zhao ZQ, Lv Q, 2020. How is the progress of new coronary pneumonia drugs and vaccines? The scientist came to answer the question. people.cn. http://scitech.people.com.cn/n1/2020/0215/c1007-31588725.html [Accessed on Feb. 28, 2020] (in Chinese).

Zheng QL, Duan T, Jin LP, 2020. Single-cell RNA expression profiling of ACE2 and AXL in the human maternal-fetal interface. Reprod Dev Med, 4(1):7–10. https://doi.org/10.4103/2096-2924.278679

Zhou P, Yang XL, Wang XG, et al., 2020a. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv, preprint. https://doi.org/10.1101/2020.01.22.914952

Zhou P, Yang XL, Wang XG, et al., 2020b. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7

Zhou YY, Zeng YY, Tong YQ, et al., 2020. Ophthalmologic evidence against the interpersonal transmission of 2019 novel coronavirus through conjunctiva. medRxiv, preprint. https://doi.org/10.1101/2020.02.11.20021956

Zhu N, Zhang DY, Wang WL, et al., 2020. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 382(8):727–733. https://doi.org/10.1056/NEJMoa2001017

Zou LR, Ruan F, Huang MX, et al., 2020. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med, 382(12):1177–1179. https://doi.org/10.1056/NEJMc2001737