An overview and recent advances in electrocatalysts for direct seawater splitting

Springer Science and Business Media LLC - Tập 15 Số 6 - Trang 1408-1426 - 2021
Haoyu Wang1, Chen‐Chen Weng1, Jin‐Tao Ren1, Zhong‐Yong Yuan1
1Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Xu K, Cheng H, Lv H F, Wang J Y, Liu L Q, Liu S, Wu X J, Chu W S, Wu C Z, Xie Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322

Liu T, Li P, Yao N, Cheng G Z, Chen S L, Luo W, Yin Y D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angewandte Chemie International Edition, 2019, 58(14): 4679–1684

Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408

Martindale B C M, Reisner E. Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration. Advanced Energy Materials, 2016, 6(6): 1502095

Zhang J W, Lv X W, Ren T Z, Wang Z, Bandosz T J, Yuan Z Y. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy & Environment, 2021, doi: https://doi.org/10.1016/j.gee.2020.12.009

Ren J T, Chen L, Yang D D, Yuan Z Y. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263: 118352

Zheng Y, Jiao Y, Vasileff A, Qiao S Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition, 2018, 57(26): 7568–7579

Ren J T, Yao Y, Yuan Z Y. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643

Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1: 0003

Lv X W, Hu Z P, Chen L, Ren J T, Liu Y P, Yuan Z Y. Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12770–12778

Zhang J W, Zhang H, Ren T Z, Yuan Z Y, Bandosz T J. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287

Ji X X, Lin Y H, Zeng J, Ren Z H, Lin Z J, Mu Y B, Qiu Y J, Yu J. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nature Communications, 2021, 12(1): 1380

Wang J, Kim S J, Liu J P, Gao Y, Choi S B, Han J W, Shin H Y, Jo S G, Kim J W, Ciucci F, et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4(3): 212–222

Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2012, 100(2): 410–426

Zhao H, Yuan Z Y. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem, 2021, 14(1): 130–149

Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

Weng C C, Ren J T, Yuan Z Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. ChemSusChem, 2020, 13(13): 3357–3375

Ren J T, Song Y J, Yuan Z Y. Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of Energy Chemistry, 2019, 32: 78–84

Cuartero M, Crespo G, Cherubini T, Pankratova N, Confalonieri F, Massa F, Tercier-Waeber M L, Abdou M, Schäfer J, Bakker E. In situ detection of macronutrients and chloride in seawater by submersible electrochemical sensors. Analytical Chemistry, 2018, 90(7): 4702–4710

Xiang C, Papadantonakis K M, Lewis N S. Principles and implementations of electrolysis systems for water splitting. Materials Horizons, 2016, 3(3): 169–173

Tong W, Forster M, Dionigi F, Dresp S, Sadeghi Erami R, Strasser P, Cowan A J, Farràs P. Electrolysis of low-grade and saline surface water. Nature Energy, 2020, 5(5): 367–377

Kester D R, Duedall I W, Connors D N, Pytkowicz R M. Preparation of artifcicial seawater. Limnology and Oceanography, 1967, 12(1): 176–179

Yu L, Zhu Q, Song S, McElhenny B, Wang D, Wu C, Qin Z, Bao J, Yu Y, Chen S, Ren Z. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106

Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem, 2016, 9(9): 962–972

Exner K S, Sohrabnejad-Eskan I, Over H. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catalysis, 2018, 8(3): 1864–1879

Exner K S, Anton J, Jacob T, Over H. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angewandte Chemie International Edition, 2014, 53(41): 11032–11035

Ysea N, Diaz L A, Lacconi G I, Franceschini E A. Stability study of materials for electrode supports for the hydrogen generation from a NaCl aqueous solution. Electrocatalysis, 2021, 12(5): 537–547

Auinger M, Katsounaros I, Meier J C, Klemm S O, Biedermann P U, Topalov A A, Rohwerder M, Mayrhofer K J J. Near-surface ion distribution and buffer effects during electrochemical reactions. Physical Chemistry Chemical Physics, 2011, 13(36): 16384–16394

Katsounaros I, Meier J C, Klemm S O, Topalov A A, Biedermann P U, Auinger M, Mayrhofer K J J. The effective surface pH during reactions at the solid-liquid interface. Electrochemistry Communications, 2011, 13(6): 634–637

Kirk D W, Ledas A E. Precipitate formation during sea water electrolysis. International Journal of Hydrogen Energy, 1982, 7(12): 925–932

Bennett J E. Electrodes for generation of hydrogen and oxygen from seawater. International Journal of Hydrogen Energy, 1980, 5(4): 401–408

Wu X, Zhou S, Wang Z, Liu J, Pei W, Yang P, Zhao J, Qiu J. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333

Gao S, Li G D, Liu Y, Chen H, Feng L L, Wang Y, Yang M, Wang D, Wang S, Zou X. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7(6): 2306–2316

Karlsson R K B, Cornell A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chemical Reviews, 2016, 116(5): 2982–3028

Oh B S, Oh S G, Hwang Y Y, Yu H W, Kang J W, Kim I S. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination. Science of the Total Environment, 2010, 408(23): 5958–5965

Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater. Materials Transactions, 1997, 38(10): 899–905

Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Anodically deposited manganese oxide and manganese-tungsten oxide electrodes for oxygen evolution from seawater. Electrochimica Acta, 1998, 43(21): 3303–3312

Niu J, Yang J, Channa A I, Ashalley E, Yang J, Jiang J, Li H, Ji H, Niu X. Enhancing the water splitting performance via decorating Co3O4 nanoarrays with ruthenium doping and phosphorization. RSC Advances, 2020, 10(45): 27235–27241

Gupta S, Forster M, Yadav A, Cowan A J, Patel N, Patel M. Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions. ACS Applied Energy Materials, 2020, 3(8): 7619–7628

Fujimura K, Matsui T, Habazaki H, Kawashima A, Kumagai N, Hashimoto K. The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochimica Acta, 2000, 45(14): 2297–2303

Dresp S, Dionigi F, Loos S, Ferreira de Araujo J, Spöri C, Gliech M, Dau H, Strasser P. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Advanced Energy Materials, 2018, 8(22): 1800338

Yu L, Wu L B, McElhenny B, Song S W, Luo D, Zhang F H, Yu Y, Chen S, Ren Z F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy & Environmental Science, 2020, 13(10): 3439–3446

Wang C Z, Zhu M Z, Cao Z Y, Zhu P, Cao Y Q, Xu X Y, Xu C X, Yin Z Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021, 291: 120071

Petrykin V, Macounova K, Shlyakhtin O A, Krtil P. Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angewandte Chemie International Edition, 2010, 49(28): 4813–4815

Gayen P, Saha S, Ramani V. Selective seawater splitting using pyrochlore electrocatalyst. ACS Applied Energy Materials, 2020, 3(4): 3978–3983

Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Advanced Energy Materials, 2018, 8(29): 1801926

Surendranath Y, Dincă M, Nocera D G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. Journal of the American Chemical Society, 2009, 131(7): 2615–2620

Zhang Q J, Zhao X J, Miao X J, Yang W T, Wang C T, Pan Q H. ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. International Journal of Hydrogen Energy, 2020, 45(58): 33028–33036

Cheng F F, Feng X L, Chen X, Lin W G, Rong J F, Yang W S. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochimica Acta, 2017, 251: 336–343

Vos J G, Wezendonk T A, Jeremiasse A W, Koper M T M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. Journal of the American Chemical Society, 2018, 140(32): 10270–10281

Huang W H, Lin C Y. Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discussions, 2019, 215: 205–215

Jadhav A R, Kumar A, Lee J J, Yang T H, Na S Y, Lee J S, Luo Y G, Liu X H, Hwang Y, Liu Y, Lee H. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(46): 24501–24514

Balaji R, Kannan B S, Lakshmi J, Senthil N, Vasudevan S, Sozhan G, Shukla A K, Ravichandran S. An alternative approach to selective sea water oxidation for hydrogen production. Electrochemistry Communications, 2009, 11(8): 1700–1702

Kuang Y, Kenney M J, Meng Y, Hung W H, Liu Y, Huang J E, Prasanna R, Li P, Li Y, Wang L, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629

Fujimura K, Matsui T, Izumiya K, Kumagai N, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K. Oxygen evolution on manganese-molybdenum oxide anodes in seawater electrolysis. Materials Science and Engineering A, 1999, 267(2): 254–259

Abdel Ghany N A, Kumagai N, Meguro S, Asami K, Hashimoto K. Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis. Electrochimica Acta, 2002, 48(1): 21–28

El-Moneim A A, Kumagai N, Asami K, Hashimoto K. Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in acidic seawater electrolysis. Materials Transactions, 2005, 46(2): 309–316

El-Moneim A A, Kumagai N, Hashimoto K. Mn-Mo-W oxide anodes for oxygen evolution in seawater electrolysis for hydrogen production. Materials Transactions, 2009, 50(8): 1969–1977

Kato Z, Bhattarai J, Kumagai N, Izumiya K, Hashimoto K. Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen production. Applied Surface Science, 2011, 257(19): 8230–8236

Kato Z, Sato M, Sasaki Y, Izumiya K, Kumagai N, Hashimoto K. Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis. Electrochimica Acta, 2014, 116: 152–157

Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta, 1984, 29(11): 1503–1512

Obata K, Takanabe K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2018, 57(6): 1616–1620

Yang F, Luo Y, Yu Q, Zhang Z, Zhang S, Liu Z, Ren W, Cheng H M, Li J, Liu B. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm−2. Advanced Functional Materials, 2021, 31(21): 2010367

Jakšić M M. Electrocatalysis of hydrogen evolution in the light of the Brewer-Engel theory for bonding in metals and intermetallic phases. Electrochimica Acta, 1984, 29(11): 1539–1550

Zheng J J, Zhao Y Y, Xi H, Li C H. Seawater splitting for hydrogen evolution by robust electrocatalysts from secondary M (M = Cr, Fe, Co, Ni, Mo) incorporated Pt. RSC Advances, 2018, 8(17): 9423–9429

Li H Y, Tang Q W, He B L, Yang P Z. Robust electrocatalysts from an alloyed Pt-Ru-M (M = Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6513–6520

Camöes M F, Anes B, Oliveira C S, Jorge M E M. Surface changes at platinized platinum based hydrogen gas electrodes following use in highly saline aqueous solutions. Electroanalysis, 2014, 26(9): 1952–1957

Yuan W, Cui Z, Zhu S, Li Z, Wu S, Liang Y. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting. Electrochimica Acta, 2021, 365: 137366

Miao J W, Xiao F X, Yang H B, Khoo S Y, Chen J Z, Fan Z X, Hsu Y Y, Chen H M, Zhang H, Liu B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1(7): e1500259

Shang L, Zhao Y, Kong X Y, Shi R, Waterhouse G I N, Wen L, Zhang T. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, 78: 105375

Song L J, Meng H M. Effect of carbon content on Ni-Fe-C electrodes for hydrogen evolution reaction in seawater. International Journal of Hydrogen Energy, 2010, 35(19): 10060–10066

Dinh C T, Jain A, de Arquer F P G, De Luna P, Li J, Wang N, Zheng X, Cai J, Gregory B Z, Voznyy O, et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4(2): 107–114

Jin H, Liu X, Vasileff A, Jiao Y, Zhao Y, Zheng Y, Qiao S Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano, 2018, 12(12): 12761–12769

Zang W, Sun T, Yang T, Xi S, Waqar M, Kou Z, Lyu Z, Feng Y P, Wang J, Pennycook S J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33(8): 2003846

Yu L, Wu L B, Song S W, McElhenny B, Zhang F H, Chen S, Ren Z F. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN∣NixP∣NiCoN microsheet array catalyst. ACS Energy Letters, 2020, 5(8): 2681–2689

Endrödi B, Sandin S, Smulders V, Simic N, Wildlock M, Mul G, Mei B T, Cornell A. Towards sustainable chlorate production: the effect of permanganate addition on current efficiency. Journal of Cleaner Production, 2018, 182: 529–537

Ma Y Y, Wu C X, Feng X J, Tan H Q, Yan L K, Liu Y, Kang Z H, Wang E B, Li Y G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798

Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C, Lin Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angewandte Chemie International Edition, 2016, 55(21): 6290–6294

Ren J T, Yuan Z Y. Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7203–7210

Lv X W, Hu Z P, Ren J T, Liu Y P, Wang Z, Yuan Z Y. Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 2019, 6(1): 74–81

Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347

Ling T, Yan D Y, Wang H, Jiao Y, Hu Z, Zheng Y, Zheng L, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8(1): 1509

Song F Z, Li W, Yang J Q, Han G Q, Liao P L, Sun Y J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9(1): 4531

Han N N, Yang K R, Lu Z Y, Li Y J, Xu W W, Gao T F, Cai Z, Zhang Y, Batista V S, Liu W, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9(1): 924

Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 2017, 16(9): 925–931

Lv X W, Tian W W, Liu Y P, Yuan Z Y. Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc-air batteries. Materials Chemistry Frontiers, 2019, 3(11): 2428–2436

Duan S, Liu Z, Zhuo H H, Wang T Y, Liu J Y, Wang L, Liang J S, Han J T, Huang Y H, Li Q. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale, 2020, 12(42): 21743–21749

Wu L B, Yu L, Zhang F H, McElhenny B, Luo D, Karim A, Chen S, Ren Z F. Heterogeneous bimetallic phosphide Ni2P-Fe2Pasan efficient bifunctional catalyst for water/seawater splitting. Advanced Functional Materials, 2021, 31(1): 2006484

Zhao Y Q, Jin B, Vasileff A, Jiao Y, Qiao S Z. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(14): 8117–8121

Ros C, Murcia-López S, Garcia X, Rosado M, Arbiol J, Llorca J, Morante J R. Facing seawater splitting challenges by regeneration with Ni-Mo-Fe OER/HER bifunctional electrocatalyst. Chem-SusChem, 2021, 14(14): 2872–2881

Xu S S, Lv X W, Zhao Y M, Ren T Z, Yuan Z Y. Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. Journal of Energy Chemistry, 2021, 52: 139–146

Zhao H, Yuan Z Y. Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54: 89–104

Hsu S H, Miao J, Zhang L, Gao J, Wang H, Tao H, Hung S F, Vasileff A, Qiao S Z, Liu B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261

Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renewable & Sustainable Energy Reviews, 2018, 81: 1690–1704

Carmo M, Fritz D L, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013, 38(12): 4901–4934

Chae K J, Choi M, Ajayi F F, Park W, Chang I S, Kim I S. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy & Fuels, 2008, 22(1): 169–176

Müller M, Carmo M, Glüsen A, Hehemann M, Saba S, Zwaygardt W, Stolten D. Water management in membrane electrolysis and options for advanced plants. International Journal of Hydrogen Energy, 2019, 44(21): 10147–10155

Dresp S, Ngo Thanh T, Klingenhof M, Brückner S, Hauke P, Strasser P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy & Environmental Science, 2020, 13(6): 1725–1729

Kumari S, Turner White R, Kumar B, Spurgeon J M. Solar hydrogen production from seawater vapor electrolysis. Energy & Environmental Science, 2016, 9(5): 1725–1733

Kida T, Kuwaki Y, Miyamoto A, Hamidah N L, Hatakeyama K, Quitain A T, Sasaki M, Urakawa A. Water vapor electrolysis with proton-conducting graphene oxide nanosheets. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11753–11758