An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres

Composite Structures - Tập 121 - Trang 324-336 - 2015
Marika Eik1,2, Jari Puttonen1, Heiko Herrmann2,3
1Civil and Structural Engineering Department, Aalto University School of Engineering, Rakentajanaukio 4 A, Otaniemi, Espoo, Finland
2Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
3Institute of Physics, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany

Tài liệu tham khảo

Advani, 1987, The use of tensors to describe and predict fiber orientation in short fiber composites, J Rheol, 31, 751, 10.1122/1.549945 Altenbach, 2003, Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics, Mech Compos Mater, 39, 221, 10.1023/A:1024566026411 Baikov, 1981 Barnett, 2010, Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength, Mater Struct, 43, 1009, 10.1617/s11527-009-9562-3 Becker, 1975 Bednár, 2013, Experiments on membrane action of composite floors with steel fibre reinforced concrete slab exposed to fire, Fire Safety J, 59, 111, 10.1016/j.firesaf.2013.04.008 Bertram, 2005 Brinson, 1998, Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites, Compos Struct, 41, 353, 10.1016/S0263-8223(98)00019-1 Chi, 2014, Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation, Compos Struct, 111, 497, 10.1016/j.compstruct.2014.01.025 Cox, 1952, The elasticity and strength of paper and other fibrous materials, Brit J Appl Phys, 3, 72, 10.1088/0508-3443/3/3/302 Dumont, 2009, A numerical analysis of the evolution of bundle orientation in concentrated fibre-bundle suspensions, J Non-Newtonian Fluid Mech, 160, 76, 10.1016/j.jnnfm.2009.03.001 Ehrentraut, 1998, On Symmetric irreducible tensors in d-dimensions, ARI – Int J Phys Eng Sci, 51, 149 Eik, 2013, DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC, J Mater Sci, 48, 3745, 10.1007/s10853-013-7174-3 Eppenga, 1984, Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets, Mol Phys, 52, 1303, 10.1080/00268978400101951 Eringen, 1967 European Committee for Standardization. EN 1992-1-1 Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, EN. CEN, Brussels; 2005. Gross, 2013, On the ability of nanoindentation to measure anisotropic elastic constants of pyrolytic carbon, ZAMM – J Appl Math Mech/Zeit Angew Math Mech, 93, 301, 10.1002/zamm.201100128 Grünewald S. Performance-based design of self-compacting fibre reinforced concrete [Ph.D. thesis]. Technische Universiteit Delft; 2004. <http://repository.tudelft.nl/view/ir/uuid:07a817aa-cba1-4c93-bbed-40a5645cf0f1/>. Herrmann, 2011, Some comments on the theory of short fibre reinforced material, Proc Estonian Acad Sci, 60, 179, 10.3176/proc.2011.3.06 Herrmann, 2014, Phenomenological and numerical modelling of short fibre reinforced cementitious composites, Meccanica, 49, 1985, 10.1007/s11012-014-0001-3 Itskov, 2009 Itskov, 2004, A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, Int J Solids Struct, 41, 3833, 10.1016/j.ijsolstr.2004.02.027 Klusemann, 2010, Homogenization methods for multi-phase elastic composites: comparisons and benchmarks, Tech Mech, 30, 374 Labib W, Eden N. An investigation into the use of fibres in concrete industrial ground-floor slabs. In: 3rd International built and human environment research week, Rotterdam (Netherlands); 2006. p. 466–77.<http://www.irbnet.de/daten/iconda/CIB9056.pdf>. Laranjeira F. Design-oriented constitutive model for steel fiber reinforced concrete [Ph.D. thesis]. Universitat Politecnica de Catalunya; 2010. <http://www.tdx.cat/TDX-0602110-115910>. Larsson, 2009, On the adaptive use of the Taylor assumption in computational homogenization of thin metal sheets, Int J Mater Form, 2, 903, 10.1007/s12289-009-0632-4 Le, 2008, X-ray phase contrast microtomography for the analysis of the fibrous microstructure of SMC composites, Compos Part A: Appl Sci Manuf, 39, 91, 10.1016/j.compositesa.2007.08.027 Liefeith, 2007, An anisotropic material model for finite rubber viscoelasticity, LS-DYNA Anwenderforum, 25 Mehrabadi, 1990, Eigentensors of linear anisotropic elastic materials, Quart J Mech Appl Math, 43, 15, 10.1093/qjmam/43.1.15 Meier, 2008, Towards multiscale computation of confined granular media: contact forces, stresses and tangent operators, Tech Mech, 28, 32 Mercier, 2012, Comparison of different homogenization approaches for elastic–viscoplastic materials, Modell Simul Mater Sci Eng, 20, 1, 10.1088/0965-0393/20/2/024004 Muschik W, Papenfuss C, Ehrentraut H. Concepts of continuum thermodynamics. Kielce University of Technology, Technische Universität Berlin; 1996. Narasimhan, 1993 Neiman J. Sugaipova L. CΦepихeckиe Φyhkции ииx пpиMeHeиe (Spherical functions and their application). MocKOBCKий гocyдapcTBeHHьIй yHиBepcитeт гeoдeзии иkapьOгpaΦии (Moscow State University of Geodesy and Cartography); 2005. <http://vm.miigaik.ru/kollektiv_kafedr/preppages/neiman_um/>. Neves, 1998, On the effect of the fiber orientation on the flexural stiffness of injection molded short fiber reinforced polycarbonate plates, Polym Compos, 19, 640, 10.1002/pc.10137 Nilenius F, Larsson F, Lundgren K, Runesson K. A 3D/2D comparison between heterogeneous mesoscale models of concrete. In: Multi-scale modeling and characterization of infrastructure materials, RILEM Bookseries, vol. 8, p. 249–59. <http://dx.doi.org/10.1007/978-94-007-6878-9_18>. Spencer, 1962, Isotropic integrity bases for vectors and second-order tensors, Arch Ration Mech Anal, 9, 45, 10.1007/BF00253332 Steuer H. Thermodynamical Properties Of A Model Liquid Crystal [Ph.D. thesis]. TU Berlin; 2004. <http://opus.kobv.de/tuberlin/volltexte/2004/919/>. Suuronen, 2013, Analysis of short fibres orientation in steel fibre-reinforced concrete (SFRC) by X-ray tomography, J Mater Sci, 48, 1358, 10.1007/s10853-012-6882-4 Taya, 1989 Tazaly Z. Punching shear capacity of fibre reinforced concrete slabs with conventional reinforcement [Master’s thesis]. Royal Institute of Technology (KTH), Sweden; 2011. <kth.diva-portal.org/smash/get/diva2:610902/FULLTEXT01.pdf>. Tejchman, 2010, Experimental and theoretical investigations of steel-fibrous concrete, 10.1007/978-3-642-14603-9 Teodorescu, 2004, Applications of the theory of groups in mechanics and physics, vol. 140 Truesdell, 1965 Waldmann, 1960, Diffusionstheorie für polarisierte teilchen, Z Naturforsch A, 15a, 19, 10.1515/zna-1960-0106 Waldmann, 1963, Kinetische theorie des Lorentz-Gases aus rotierenden molekülen, Z Naturforsch A, 18a, 1033, 10.1515/zna-1963-1001 Won, 2013, Bonding properties of amorphous micro-steel fibre-reinforced cementitious composites, Compos Struct, 102, 101, 10.1016/j.compstruct.2013.02.015