An optimized combination inspired by the wooden-barrel effect for Li-S pouch cells

Cell Reports Physical Science - Tập 2 - Trang 100659 - 2021
Jian Tan1,2, Zhiqiang Yao1, Mingxin Ye1, Jianfeng Shen1
1Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
2Department of Materials Science, Fudan University, Shanghai, P.R. China

Tài liệu tham khảo

Whittingham, 2014, Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev., 114, 11414, 10.1021/cr5003003 Bruce, 2011, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191 Yu, 2020, Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries, Nat. Energy, 5, 526, 10.1038/s41560-020-0634-5 Pang, 2016, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes, Nat. Energy, 1, 16132, 10.1038/nenergy.2016.132 Ji, 2009, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 8, 500, 10.1038/nmat2460 Chen, 2021, Advances in lithium-sulfur batteries: From academic research to commercial viability, Adv. Mater., 33, e2003666, 10.1002/adma.202003666 Cha, 2018, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries, Nat. Nanotechnol., 13, 337, 10.1038/s41565-018-0061-y Lang, 2019, One-pot solution coating of high quality LiF layer to stabilize Li metal anode, Energy Storage Mater., 16, 85, 10.1016/j.ensm.2018.04.024 Chen, 2021, Selective permeable lithium-ion channels on lithium metal for practical lithium-sulfur pouch c ells, Angew. Chem. Int. Ed. Engl., 60, 18031, 10.1002/anie.202101958 He, 2020, The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium, Proc. Natl. Acad. Sci. USA, 117, 73, 10.1073/pnas.1911017116 Cheng, 2017, Implantable solid electrolyte interphase in lithium-metal batteries, Chem, 2, 258, 10.1016/j.chempr.2017.01.003 Liu, 2021, Fluoride-rich solid-electrolyte-interface enabling stable sodium metal batteries in high-safe electrolytes, Adv. Funct. Mater., 31, 2103522, 10.1002/adfm.202103522 Zheng, 2017, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nat. Energy, 2, 17012, 10.1038/nenergy.2017.12 Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114, 10.1038/nenergy.2016.114 Wang, 2020, A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries, Adv. Mater., 32, e2000302, 10.1002/adma.202000302 Niu, 2019, Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions, Nat. Nanotechnol., 14, 594, 10.1038/s41565-019-0427-9 Zhang, 2018, Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries, Joule, 2, 764, 10.1016/j.joule.2018.02.001 Chen, 2019, Critical parameters for evaluating coin cells and pouch cells of rechargeable li-metal batteries, Joule, 3, 1094, 10.1016/j.joule.2019.02.004 Jin, 2020, High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries, Joule, 4, 262, 10.1016/j.joule.2019.09.003 Bhargav, 2020, Lithium-sulfur batteries: Attaining the critical metrics, Joule, 4, 285, 10.1016/j.joule.2020.01.001 Han, 2021, Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives, InfoMat, 3, 155, 10.1002/inf2.12166 Xiao, 2019, How lithium dendrites form in liquid batteries, Science, 366, 426, 10.1126/science.aay8672 Zhou, 2020, Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery, Nat. Nanotechnol., 15, 224, 10.1038/s41565-019-0618-4 Shadike, 2021, Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes, Nat. Nanotechnol., 16, 549, 10.1038/s41565-020-00845-5 Yao, 2019, A compact inorganic layer for robust anode protection in lithium-sulfur batteries, InfoMat, 2, 379, 10.1002/inf2.12046 Xu, 2019, Artificial interphases for highly stable lithium metal anode, Matter, 1, 317, 10.1016/j.matt.2019.05.016 Fan, 2018, Highly fluorinated interphases enable high-voltage Li-metal batteries, Chem, 4, 174, 10.1016/j.chempr.2017.10.017 Ren, 2018, Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries, Chem, 4, 1877, 10.1016/j.chempr.2018.05.002 Li, 2019, Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery, Energy Storage Mater., 18, 222, 10.1016/j.ensm.2018.09.012 Guo, 2021, Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery, Nat. Commun., 12, 3031, 10.1038/s41467-021-23155-3 Lian, 2021, Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li-S batteries, J. Am. Chem. Soc., 143, 11063, 10.1021/jacs.1c04222 Tan, 2021, Tailoring uniform and ordered grain boundaries in the solid electrolyte interphase for dendrite-free lithium metal batteries, Mater. Today Energy, 22, 100858, 10.1016/j.mtener.2021.100858 Huang, 2020, Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells, Energy Storage Mater., 30, 87, 10.1016/j.ensm.2020.04.035 Cheng, 2017, The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection, Energy Storage Mater., 6, 18, 10.1016/j.ensm.2016.09.003 Shen, 2019, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Commun., 10, 900, 10.1038/s41467-019-08767-0 Liu, 2020, Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode, Adv. Mater., 32, e1902724, 10.1002/adma.201902724 Wang, 2019, Conductive CoOOH as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite for Lithium–Sulfur Battery, Adv. Funct. Mater., 29, 1901051, 10.1002/adfm.201901051 Xue, 2019, Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities, Nat. Energy, 4, 374, 10.1038/s41560-019-0351-0 Zhao, 2021, A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites, Nat. Nanotechnol., 16, 166, 10.1038/s41565-020-00797-w Ye, 2017, Toward practical high-energy batteries: A modular-assembled oval-like carbon microstructure for thick sulfur electrodes, Adv. Mater., 29, 1700598, 10.1002/adma.201700598 Zhang, 2018, Graphene and its derivatives in lithium–sulfur batteries, Mater. Today Energy, 9, 319, 10.1016/j.mtener.2018.06.001 Liu, 2019, Atomic layer deposition-assisted construction of binder-free Ni@N-doped carbon nanospheres films as advanced host for sulfur cathode, Nano-Micro Lett., 11, 64, 10.1007/s40820-019-0295-8 Shen, 2019, Implanting niobium carbide into trichoderma spore carbon: A new advanced host for sulfur cathodes, Adv. Mater., 31, e1900009, 10.1002/adma.201900009 Huang, 2020, Electrode design for lithium–sulfur batteries: Problems and solutions, Adv. Funct. Mater., 30, 1910375, 10.1002/adfm.201910375 Liu, 2020, Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries, Adv. Mater., 32, e2003657, 10.1002/adma.202003657 Wang, 2020, Design and construction of a three-dimensional electrode with biomass-derived carbon current collector and water-soluble binder for high-sulfur-loading lithium-sulfur batteries, Carbon Energy, 2, 635, 10.1002/cey2.49 Kang, 2021, Thick free-standing electrode based on carbon–carbon nitride microspheres with large mesopores for high-energy-density lithium–sulfur batteries, Carbon Energy, 3, 410, 10.1002/cey2.116 Xiao, 2021, Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective, Carbon Energy, 3, 271, 10.1002/cey2.96 Gallagher, 2015, Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, J. Electrochem. Soc., 163, A138, 10.1149/2.0321602jes Wei, 2020, Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries, InfoMat, 2, 483, 10.1002/inf2.12097 Bai, 2016, Metal–organic framework-based separator for lithium–sulfur batteries, Nat. Energy, 1, 16094, 10.1038/nenergy.2016.94 Pei, 2018, A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries, Joule, 2, 323, 10.1016/j.joule.2017.12.003 Fan, 2018, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotechnol., 13, 715, 10.1038/s41565-018-0183-2 Wang, 2017, Fire-extinguishing organic electrolytes for safe batteries, Nat. Energy, 3, 22, 10.1038/s41560-017-0033-8 Zheng, 2020, A cyclic phosphate-based battery electrolyte for high voltage and safe operation, Nat. Energy, 5, 291, 10.1038/s41560-020-0567-z Niu, 2021, Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries, Nat. Energy, 6, 723, 10.1038/s41560-021-00852-3 Dörfler, 2020, Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level, Joule, 4, 539, 10.1016/j.joule.2020.02.006 Liu, 2021, Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells, Angew. Chem. Int. Ed. Engl., 60, 17547, 10.1002/anie.202103303 Ju, 2021, Leakage-proof electrolyte chemistry for a high-performance lithium-sulfur battery, Angew. Chem. Int. Ed. Engl., 60, 16487, 10.1002/anie.202103209 Wald Choudhury, 2021, Engineering current collectors for batteries with high specific energy, Joule, 5, 1301, 10.1016/j.joule.2021.03.027 Maleki, 1999, Thermal properties of lithium-ion battery and components, J. Electrochem. Soc., 146, 947, 10.1149/1.1391704 Jin, 2018, Advanced 3D current collectors for lithium-based batteries, Adv. Mater., 30, e1802014, 10.1002/adma.201802014 Hu, 2021, Achieving highly reproducible results in graphite-based Li-ion full coin cells, Joule, 5, 1011, 10.1016/j.joule.2021.03.016 Fan, 2019, All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents, Nat. Energy, 4, 882, 10.1038/s41560-019-0474-3 Xu, 2021, Li-ion battery electrolytes, Nat. Energy, 6, 763, 10.1038/s41560-021-00841-6 New achievements in Li–S batteries R&D at Dalian Institute of Chemical Physics http://english.dicp.cas.cn/ns_17179/ue/201509/t20150928_153096.html (accessed: 01 November 2021). Energy Aims To Revolutionize Tian, 2020, High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode, Nat. Commun., 11, 5025, 10.1038/s41467-020-18820-y Boyjoo, 2021, Engineering nanoreactors for metal–chalcogen batteries, Energy Environ. Sci., 14, 540, 10.1039/D0EE03316B Yan, 2021, Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries, Cell Rep. Phys. Sci., 2, 100539, 10.1016/j.xcrp.2021.100539 Liu, 2019, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4, 180, 10.1038/s41560-019-0338-x Ahmed, 2021, The role of artificial intelligence in the mass adoption of electric vehicles, Joule, 5, 2296, 10.1016/j.joule.2021.07.012 Mai, 2017, Track batteries degrading in real time, Nature, 546, 469, 10.1038/546469a Feng, 2018, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review, Energy Storage Mater., 10, 246, 10.1016/j.ensm.2017.05.013