An optimized combination inspired by the wooden-barrel effect for Li-S pouch cells
Tài liệu tham khảo
Whittingham, 2014, Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev., 114, 11414, 10.1021/cr5003003
Bruce, 2011, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191
Yu, 2020, Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries, Nat. Energy, 5, 526, 10.1038/s41560-020-0634-5
Pang, 2016, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes, Nat. Energy, 1, 16132, 10.1038/nenergy.2016.132
Ji, 2009, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 8, 500, 10.1038/nmat2460
Chen, 2021, Advances in lithium-sulfur batteries: From academic research to commercial viability, Adv. Mater., 33, e2003666, 10.1002/adma.202003666
Cha, 2018, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries, Nat. Nanotechnol., 13, 337, 10.1038/s41565-018-0061-y
Lang, 2019, One-pot solution coating of high quality LiF layer to stabilize Li metal anode, Energy Storage Mater., 16, 85, 10.1016/j.ensm.2018.04.024
Chen, 2021, Selective permeable lithium-ion channels on lithium metal for practical lithium-sulfur pouch c ells, Angew. Chem. Int. Ed. Engl., 60, 18031, 10.1002/anie.202101958
He, 2020, The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium, Proc. Natl. Acad. Sci. USA, 117, 73, 10.1073/pnas.1911017116
Cheng, 2017, Implantable solid electrolyte interphase in lithium-metal batteries, Chem, 2, 258, 10.1016/j.chempr.2017.01.003
Liu, 2021, Fluoride-rich solid-electrolyte-interface enabling stable sodium metal batteries in high-safe electrolytes, Adv. Funct. Mater., 31, 2103522, 10.1002/adfm.202103522
Zheng, 2017, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nat. Energy, 2, 17012, 10.1038/nenergy.2017.12
Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114, 10.1038/nenergy.2016.114
Wang, 2020, A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries, Adv. Mater., 32, e2000302, 10.1002/adma.202000302
Niu, 2019, Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions, Nat. Nanotechnol., 14, 594, 10.1038/s41565-019-0427-9
Zhang, 2018, Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries, Joule, 2, 764, 10.1016/j.joule.2018.02.001
Chen, 2019, Critical parameters for evaluating coin cells and pouch cells of rechargeable li-metal batteries, Joule, 3, 1094, 10.1016/j.joule.2019.02.004
Jin, 2020, High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries, Joule, 4, 262, 10.1016/j.joule.2019.09.003
Bhargav, 2020, Lithium-sulfur batteries: Attaining the critical metrics, Joule, 4, 285, 10.1016/j.joule.2020.01.001
Han, 2021, Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives, InfoMat, 3, 155, 10.1002/inf2.12166
Xiao, 2019, How lithium dendrites form in liquid batteries, Science, 366, 426, 10.1126/science.aay8672
Zhou, 2020, Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery, Nat. Nanotechnol., 15, 224, 10.1038/s41565-019-0618-4
Shadike, 2021, Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes, Nat. Nanotechnol., 16, 549, 10.1038/s41565-020-00845-5
Yao, 2019, A compact inorganic layer for robust anode protection in lithium-sulfur batteries, InfoMat, 2, 379, 10.1002/inf2.12046
Xu, 2019, Artificial interphases for highly stable lithium metal anode, Matter, 1, 317, 10.1016/j.matt.2019.05.016
Fan, 2018, Highly fluorinated interphases enable high-voltage Li-metal batteries, Chem, 4, 174, 10.1016/j.chempr.2017.10.017
Ren, 2018, Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries, Chem, 4, 1877, 10.1016/j.chempr.2018.05.002
Li, 2019, Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery, Energy Storage Mater., 18, 222, 10.1016/j.ensm.2018.09.012
Guo, 2021, Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery, Nat. Commun., 12, 3031, 10.1038/s41467-021-23155-3
Lian, 2021, Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li-S batteries, J. Am. Chem. Soc., 143, 11063, 10.1021/jacs.1c04222
Tan, 2021, Tailoring uniform and ordered grain boundaries in the solid electrolyte interphase for dendrite-free lithium metal batteries, Mater. Today Energy, 22, 100858, 10.1016/j.mtener.2021.100858
Huang, 2020, Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells, Energy Storage Mater., 30, 87, 10.1016/j.ensm.2020.04.035
Cheng, 2017, The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection, Energy Storage Mater., 6, 18, 10.1016/j.ensm.2016.09.003
Shen, 2019, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Commun., 10, 900, 10.1038/s41467-019-08767-0
Liu, 2020, Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode, Adv. Mater., 32, e1902724, 10.1002/adma.201902724
Wang, 2019, Conductive CoOOH as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite for Lithium–Sulfur Battery, Adv. Funct. Mater., 29, 1901051, 10.1002/adfm.201901051
Xue, 2019, Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities, Nat. Energy, 4, 374, 10.1038/s41560-019-0351-0
Zhao, 2021, A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites, Nat. Nanotechnol., 16, 166, 10.1038/s41565-020-00797-w
Ye, 2017, Toward practical high-energy batteries: A modular-assembled oval-like carbon microstructure for thick sulfur electrodes, Adv. Mater., 29, 1700598, 10.1002/adma.201700598
Zhang, 2018, Graphene and its derivatives in lithium–sulfur batteries, Mater. Today Energy, 9, 319, 10.1016/j.mtener.2018.06.001
Liu, 2019, Atomic layer deposition-assisted construction of binder-free Ni@N-doped carbon nanospheres films as advanced host for sulfur cathode, Nano-Micro Lett., 11, 64, 10.1007/s40820-019-0295-8
Shen, 2019, Implanting niobium carbide into trichoderma spore carbon: A new advanced host for sulfur cathodes, Adv. Mater., 31, e1900009, 10.1002/adma.201900009
Huang, 2020, Electrode design for lithium–sulfur batteries: Problems and solutions, Adv. Funct. Mater., 30, 1910375, 10.1002/adfm.201910375
Liu, 2020, Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries, Adv. Mater., 32, e2003657, 10.1002/adma.202003657
Wang, 2020, Design and construction of a three-dimensional electrode with biomass-derived carbon current collector and water-soluble binder for high-sulfur-loading lithium-sulfur batteries, Carbon Energy, 2, 635, 10.1002/cey2.49
Kang, 2021, Thick free-standing electrode based on carbon–carbon nitride microspheres with large mesopores for high-energy-density lithium–sulfur batteries, Carbon Energy, 3, 410, 10.1002/cey2.116
Xiao, 2021, Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective, Carbon Energy, 3, 271, 10.1002/cey2.96
Gallagher, 2015, Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, J. Electrochem. Soc., 163, A138, 10.1149/2.0321602jes
Wei, 2020, Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries, InfoMat, 2, 483, 10.1002/inf2.12097
Bai, 2016, Metal–organic framework-based separator for lithium–sulfur batteries, Nat. Energy, 1, 16094, 10.1038/nenergy.2016.94
Pei, 2018, A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries, Joule, 2, 323, 10.1016/j.joule.2017.12.003
Fan, 2018, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotechnol., 13, 715, 10.1038/s41565-018-0183-2
Wang, 2017, Fire-extinguishing organic electrolytes for safe batteries, Nat. Energy, 3, 22, 10.1038/s41560-017-0033-8
Zheng, 2020, A cyclic phosphate-based battery electrolyte for high voltage and safe operation, Nat. Energy, 5, 291, 10.1038/s41560-020-0567-z
Niu, 2021, Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries, Nat. Energy, 6, 723, 10.1038/s41560-021-00852-3
Dörfler, 2020, Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level, Joule, 4, 539, 10.1016/j.joule.2020.02.006
Liu, 2021, Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells, Angew. Chem. Int. Ed. Engl., 60, 17547, 10.1002/anie.202103303
Ju, 2021, Leakage-proof electrolyte chemistry for a high-performance lithium-sulfur battery, Angew. Chem. Int. Ed. Engl., 60, 16487, 10.1002/anie.202103209
Wald
Choudhury, 2021, Engineering current collectors for batteries with high specific energy, Joule, 5, 1301, 10.1016/j.joule.2021.03.027
Maleki, 1999, Thermal properties of lithium-ion battery and components, J. Electrochem. Soc., 146, 947, 10.1149/1.1391704
Jin, 2018, Advanced 3D current collectors for lithium-based batteries, Adv. Mater., 30, e1802014, 10.1002/adma.201802014
Hu, 2021, Achieving highly reproducible results in graphite-based Li-ion full coin cells, Joule, 5, 1011, 10.1016/j.joule.2021.03.016
Fan, 2019, All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents, Nat. Energy, 4, 882, 10.1038/s41560-019-0474-3
Xu, 2021, Li-ion battery electrolytes, Nat. Energy, 6, 763, 10.1038/s41560-021-00841-6
New achievements in Li–S batteries R&D at Dalian Institute of Chemical Physics http://english.dicp.cas.cn/ns_17179/ue/201509/t20150928_153096.html (accessed: 01 November 2021).
Energy Aims To Revolutionize
Tian, 2020, High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode, Nat. Commun., 11, 5025, 10.1038/s41467-020-18820-y
Boyjoo, 2021, Engineering nanoreactors for metal–chalcogen batteries, Energy Environ. Sci., 14, 540, 10.1039/D0EE03316B
Yan, 2021, Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries, Cell Rep. Phys. Sci., 2, 100539, 10.1016/j.xcrp.2021.100539
Liu, 2019, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4, 180, 10.1038/s41560-019-0338-x
Ahmed, 2021, The role of artificial intelligence in the mass adoption of electric vehicles, Joule, 5, 2296, 10.1016/j.joule.2021.07.012
Mai, 2017, Track batteries degrading in real time, Nature, 546, 469, 10.1038/546469a
Feng, 2018, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review, Energy Storage Mater., 10, 246, 10.1016/j.ensm.2017.05.013