An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation

Erik Cuevas1, Alonso Echavarría1, Marte A. Ramírez-Ortegón2
1Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, México
2Institut für Nachrichtentechnik, Technische Universität Braunschweig, Schleinitzstrae 22, 38106, Braunschweig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Han M-F, Liao S-H, Chang J-Y, Lin C-T (2012) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell. doi: 10.1007/s10489-012-0393-5

Pardalos Panos M, Romeijn Edwin H, Tuy H (2000) Recent developments and trends in global optimization. J Comput Appl Math 124:209–228

Floudas C, Akrotirianakis I, Caratzoulas S, Meyer C, Kallrath J (2005) Global optimization in the 21st century: advances and challenges. Comput Chem Eng 29(6):1185–1202

Ying J, Ke-Cun Z, Shao-Jian Q (2007) A deterministic global optimization algorithm. Appl Math Comput 185(1):382–387

Georgieva A, Jordanov I (2009) Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. Eur J Oper Res 196:413–422

Lera D, Sergeyev Ya (2010) Lipschitz and Hölder global optimization using space-filling curves. Appl Numer Math 60(1–2):115–129

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, Chichester

De Jong K (1975) Analysis of the behavior of a class of genetic adaptive systems. Ph.D. Thesis, University of Michigan, Ann Arbor, MI

Koza JR (1990) Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA

Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Boston

de Castro LN, Von Zuben FJ (1999) Artificial immune systems: Part I—basic theory and applications. Technical report TR-DCA 01/99

Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Tech. Rep. TR-95–012, ICSI, Berkeley, CA

Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680

İlker B, Birbil S, Shu-Cherng F (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282

Rashedia E, Nezamabadi-pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1):117–122

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, December 1995, vol 4, pp 1942–1948

Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical Report No. 91-016, Politecnico di Milano

Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Oper Res 197:701–713

Chen G, Low CP, Yang Z (2009) Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans Evol Comput 13(3):661–673

Liu S-H, Mernik M, Bryant B (2009) To explore or to exploit: an entropy-driven approach for evolutionary algorithms. Int J Knowl-Based Intell Eng Syst 13(3):185–206

Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evol Comput 9(3):126–142

Fister I, Mernik M, Filipič B (2010) A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl Soft Comput 10(2):409–422

Gong W, Cai Z, Jiang L (2008) Enhancing the performance of differential evolution using orthogonal design method. Appl Math Comput 206(1):56–69

Joan-Arinyo R, Luzon MV, Yeguas E (2011) Parameter tuning of pbil and chc evolutionary algorithms applied to solve the root identification problem. Appl Soft Comput 11(1):754–767

Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

Sadegh M, Reza M, Palhang M (2012) LADPSO: using fuzzy logic to conduct PSO algorithm. Appl Intell 37(2):290–304

Yadav P, Kumar R, Panda SK, Chang CS (2012) An intelligent tuned harmony search algorithm for optimization. Inf Sci 196(1):47–72

Khajehzadeh M, Raihan Taha M, El-Shafie A, Eslami M (2012) A modified gravitational search algorithm for slope stability analysis. Eng Appl Artif Intell 25(8):1589–1597

Koumousis V, Katsaras CP (2006) A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans Evol Comput 10(1):19–28

Han M-F, Liao S-H, Chang J-Y, Lin C-T (2012) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell. doi: 10.1007/s10489-012-0393-5

Brest J, Maučec, MS (2008) Population size reduction for the differential evolution algorithm. Appl Intell 29(3):228–247

Li Y, Zeng X (2010) Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. Appl Intell 32(3):292–310

Paenke I, Jin Y, Branke J (2009) Balancing population- and individual-level adaptation in changing environments. Adapt Behav 17(2):153–174

Araujo L, Merelo JJ (2011) Diversity through multiculturality: assessing migrant choice policies in an island model. IEEE Trans Evol Comput 15(4):456–468

Gao H, Xu W (2011) Particle swarm algorithm with hybrid mutation strategy. Appl Soft Comput 11(8):5129–5142

Jia D, Zheng G, Khan MK (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181(15):3175–3187

Lozano M, Herrera F, Cano JR (2008) Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf Sci 178(23):4421–4433

Ostadmohammadi B, Mirzabeygi P, Panahi M (2013) An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol Comput 11:1–15

Yang G-P, Liu S-Y, Zhang J-K, Feng Q-X (2012) Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm. Appl Intell. doi: 10.1007/s10489-012-0398-0

Hasanzadeh M, Meybodi MR, Ebadzadeh MM (2012) Adaptive cooperative particle swarm optimizer. Appl Intell. doi: 10.1007/s10489-012-0420-6

Aribarg T, Supratid S, Lursinsap C (2012) Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl Intell 37(3):357–376

Fernandes CM, Laredo JLJ, Rosa AC, Merelo JJ (2012) The sandpile mutation Genetic Algorithm: an investigation on the working mechanisms of a diversity-oriented and self-organized mutation operator for non-stationary functions. Appl Intell. doi: 10.1007/s10489-012-0413-5

Gwak J, Sim KM (2013) A novel method for coevolving PS-optimizing negotiation strategies using improved diversity controlling EDAs. Appl Intell 38(3):384–417

Cheshmehgaz HR, Ishak Desa M, Wibowo A (2013) Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl Intell 38(3):331–356

Cuevas E, González M (2012) Multi-circle detection on images inspired by collective animal behaviour. Appl Intell. doi: 10.1007/s10489-012-0396-2

Adra SF, Fleming PJ (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15(2):183–195

Črepineš M, Liu SH, Mernik M (2011) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 1(1):1–33

Ceruti MG, Rubin, SH (2007) Infodynamics: Analogical analysis of states of matter and information. Inf Sci 177:969–987

Chowdhury D, Stauffer D (2000) Principles of equilibrium statistical mechanics. Wiley-VCH, New York

Betts DS, Turner RE (1992) Introductory statistical mechanics, 1st edn. Addison Wesley, Reading

Cengel YA, Boles MA (2005) Thermodynamics: an engineering approach, 5th edn. McGraw-Hill, New York

Bueche F, Hecht E (2011) Schaum’s outline of college physics, 11th edn. McGraw-Hill, New York

Piotrowski AP, Napiorkowski JJ, Kiczko A (2012) Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur J Oper Res 216(1):33–46

Cocco Mariani V, Justi Luvizotto LG, Alessandro Guerra F, dos Santos Coelho L (2011) A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl Math Comput 217(12):5822–5829

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

Moré JJ, Garbow BS, Hillstrom KE (1981) Testing unconstrained optimization software. ACM Trans Math Softw 7(1):17–41

Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl Math Comput 203(2):598–607

Black-Box Optimization Benchmarking (BBOB) 2010, 2nd GECCO Workshop for Real-Parameter Optimization. http://coco.gforge.inria.fr/doku.php?id=bbob-2010

Abdel-Rahman Hedar, Ali AF (2012) Tabu search with multi-level neighborhood structures for high dimensional problems. Appl Intell 37(2):189–206

Vafashoar R, Meybodi MR, Momeni Azandaryani AH (2012) CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl Intell 36(3):735–748

Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics. doi: 10.1007/s10732-008-9080-4

Shilane D, Martikainen J, Dudoit S, Ovaska S (2008) A general framework for statistical performance comparison of evolutionary computation algorithms. Inf Sci 178:2870–2879