An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Han M-F, Liao S-H, Chang J-Y, Lin C-T (2012) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell. doi: 10.1007/s10489-012-0393-5
Pardalos Panos M, Romeijn Edwin H, Tuy H (2000) Recent developments and trends in global optimization. J Comput Appl Math 124:209–228
Floudas C, Akrotirianakis I, Caratzoulas S, Meyer C, Kallrath J (2005) Global optimization in the 21st century: advances and challenges. Comput Chem Eng 29(6):1185–1202
Ying J, Ke-Cun Z, Shao-Jian Q (2007) A deterministic global optimization algorithm. Appl Math Comput 185(1):382–387
Georgieva A, Jordanov I (2009) Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. Eur J Oper Res 196:413–422
Lera D, Sergeyev Ya (2010) Lipschitz and Hölder global optimization using space-filling curves. Appl Numer Math 60(1–2):115–129
Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, Chichester
De Jong K (1975) Analysis of the behavior of a class of genetic adaptive systems. Ph.D. Thesis, University of Michigan, Ann Arbor, MI
Koza JR (1990) Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA
Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Boston
de Castro LN, Von Zuben FJ (1999) Artificial immune systems: Part I—basic theory and applications. Technical report TR-DCA 01/99
Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Tech. Rep. TR-95–012, ICSI, Berkeley, CA
Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680
İlker B, Birbil S, Shu-Cherng F (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282
Rashedia E, Nezamabadi-pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1):117–122
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, December 1995, vol 4, pp 1942–1948
Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical Report No. 91-016, Politecnico di Milano
Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Oper Res 197:701–713
Chen G, Low CP, Yang Z (2009) Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans Evol Comput 13(3):661–673
Liu S-H, Mernik M, Bryant B (2009) To explore or to exploit: an entropy-driven approach for evolutionary algorithms. Int J Knowl-Based Intell Eng Syst 13(3):185–206
Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evol Comput 9(3):126–142
Fister I, Mernik M, Filipič B (2010) A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl Soft Comput 10(2):409–422
Gong W, Cai Z, Jiang L (2008) Enhancing the performance of differential evolution using orthogonal design method. Appl Math Comput 206(1):56–69
Joan-Arinyo R, Luzon MV, Yeguas E (2011) Parameter tuning of pbil and chc evolutionary algorithms applied to solve the root identification problem. Appl Soft Comput 11(1):754–767
Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696
Sadegh M, Reza M, Palhang M (2012) LADPSO: using fuzzy logic to conduct PSO algorithm. Appl Intell 37(2):290–304
Yadav P, Kumar R, Panda SK, Chang CS (2012) An intelligent tuned harmony search algorithm for optimization. Inf Sci 196(1):47–72
Khajehzadeh M, Raihan Taha M, El-Shafie A, Eslami M (2012) A modified gravitational search algorithm for slope stability analysis. Eng Appl Artif Intell 25(8):1589–1597
Koumousis V, Katsaras CP (2006) A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans Evol Comput 10(1):19–28
Han M-F, Liao S-H, Chang J-Y, Lin C-T (2012) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell. doi: 10.1007/s10489-012-0393-5
Brest J, Maučec, MS (2008) Population size reduction for the differential evolution algorithm. Appl Intell 29(3):228–247
Li Y, Zeng X (2010) Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. Appl Intell 32(3):292–310
Paenke I, Jin Y, Branke J (2009) Balancing population- and individual-level adaptation in changing environments. Adapt Behav 17(2):153–174
Araujo L, Merelo JJ (2011) Diversity through multiculturality: assessing migrant choice policies in an island model. IEEE Trans Evol Comput 15(4):456–468
Gao H, Xu W (2011) Particle swarm algorithm with hybrid mutation strategy. Appl Soft Comput 11(8):5129–5142
Jia D, Zheng G, Khan MK (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181(15):3175–3187
Lozano M, Herrera F, Cano JR (2008) Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf Sci 178(23):4421–4433
Ostadmohammadi B, Mirzabeygi P, Panahi M (2013) An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol Comput 11:1–15
Yang G-P, Liu S-Y, Zhang J-K, Feng Q-X (2012) Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm. Appl Intell. doi: 10.1007/s10489-012-0398-0
Hasanzadeh M, Meybodi MR, Ebadzadeh MM (2012) Adaptive cooperative particle swarm optimizer. Appl Intell. doi: 10.1007/s10489-012-0420-6
Aribarg T, Supratid S, Lursinsap C (2012) Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl Intell 37(3):357–376
Fernandes CM, Laredo JLJ, Rosa AC, Merelo JJ (2012) The sandpile mutation Genetic Algorithm: an investigation on the working mechanisms of a diversity-oriented and self-organized mutation operator for non-stationary functions. Appl Intell. doi: 10.1007/s10489-012-0413-5
Gwak J, Sim KM (2013) A novel method for coevolving PS-optimizing negotiation strategies using improved diversity controlling EDAs. Appl Intell 38(3):384–417
Cheshmehgaz HR, Ishak Desa M, Wibowo A (2013) Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl Intell 38(3):331–356
Cuevas E, González M (2012) Multi-circle detection on images inspired by collective animal behaviour. Appl Intell. doi: 10.1007/s10489-012-0396-2
Adra SF, Fleming PJ (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15(2):183–195
Črepineš M, Liu SH, Mernik M (2011) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 1(1):1–33
Ceruti MG, Rubin, SH (2007) Infodynamics: Analogical analysis of states of matter and information. Inf Sci 177:969–987
Betts DS, Turner RE (1992) Introductory statistical mechanics, 1st edn. Addison Wesley, Reading
Cengel YA, Boles MA (2005) Thermodynamics: an engineering approach, 5th edn. McGraw-Hill, New York
Bueche F, Hecht E (2011) Schaum’s outline of college physics, 11th edn. McGraw-Hill, New York
Piotrowski AP, Napiorkowski JJ, Kiczko A (2012) Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur J Oper Res 216(1):33–46
Cocco Mariani V, Justi Luvizotto LG, Alessandro Guerra F, dos Santos Coelho L (2011) A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl Math Comput 217(12):5822–5829
Moré JJ, Garbow BS, Hillstrom KE (1981) Testing unconstrained optimization software. ACM Trans Math Softw 7(1):17–41
Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl Math Comput 203(2):598–607
Black-Box Optimization Benchmarking (BBOB) 2010, 2nd GECCO Workshop for Real-Parameter Optimization. http://coco.gforge.inria.fr/doku.php?id=bbob-2010
Abdel-Rahman Hedar, Ali AF (2012) Tabu search with multi-level neighborhood structures for high dimensional problems. Appl Intell 37(2):189–206
Vafashoar R, Meybodi MR, Momeni Azandaryani AH (2012) CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl Intell 36(3):735–748
Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics. doi: 10.1007/s10732-008-9080-4