An optimal two stage feature selection for speech emotion recognition using acoustic features
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anne, K. R., Kuchibhotla, S., & Vankayalapati, H. D. (2015). Acoustic modeling for emotion recognition. Berlin: Springer.
Bou-Ghazale, S. E., & Hansen, J. H. (2000). A comparative study of traditional and newly proposed features for recognition of speech under stress. IEEE Transactions on Speech and Audio Processing, 8(4), 429–442.
Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W. F., & Weiss, B. (2005). A database of german emotional speech. Interspeech, 5, 1517–1520.
Cowie, R., & Cornelius, R. R. (2003). Describing the emotional states that are expressed in speech. Speech Communication, 40(1), 5–32.
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., et al. (2001). Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, 18(1), 32–80.
Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap (Vol. 57). Boca Raton, FL: CRC Press.
El Ayadi, M., Kamel, M. S., & Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition, 44(3), 572–587.
Fernandez, R. (2003). A computational model for the automatic recognition of affect in speech. PhD thesis, Massachusetts Institute of Technology
Hozjan, V., Kacic, Z., Moreno, A., Bonafonte, A., & Nogueiras, A. (2002). Interface databases: Design and collection of a multilingual emotional speech database. In LREC
Iohnstone, T., & Scherer, K. (2000). Vocal communication of emotion. Handbook of emotion (pp. 220–235). New York: Guilford.
Jaimes, A., & Sebe, N. (2007). Multimodal human-computer interaction: A survey. Computer Vision and Image Understanding, 108(1), 116–134.
Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 153–158.
John, G. H., Kohavi, R., Pfleger, K., et al. (1994). Irrelevant features and the subset selection problem. ICML, 94, 121–129.
Kim, S., Georgiou, P. G., Lee, S., & Narayanan, S. (2007). Real-time emotion detection system using speech: Multi-modal fusion of different timescale features. In MMSP 2007, IEEE 9th Workshop on Multimedia Signal Processing (pp. 48–51). IEEE.
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1), 273–324.
Kuchibhotla, S., Vankayalapati, H., Vaddi, R., & Anne, K. (2014a). A comparative analysis of classifiers in emotion recognition through acoustic features. International Journal of Speech Technology, 17(4), 401–408.
Kuchibhotla, S., Yalamanchili, B., Vankayalapati, H., & Anne, K. (2014b). Speech emotion recognition using regularized discriminant analysis. In Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013 (pp. 363–369). Springer.
Kuchibhotlaa, S., Vankayalapati, H. D., Yalamanchili, B., & Anne, K. R. (2015). Analysis and evaluation of discriminant analysis techniques for multiclass classification of human vocal emotions. In Advances in Intelligent Informatics (pp. 325–333). Springer.
Kwon, O. W., Chan, K., Hao, J., & Lee, T. W. (2003). Emotion recognition by speech signals. In INTERSPEECH. Beijing: Citeseer.
Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502.
Luengo, I., Navas, E., & Hernáez, I. (2010). Feature analysis and evaluation for automatic emotion identification in speech. IEEE Transactions on Multimedia, 12(6), 490–501.
Murray, I. R., & Arnott, J. L. (1993). Toward the simulation of emotion in synthetic speech: A review of the literature on human vocal emotion. The Journal of the Acoustical Society of America, 93, 1097.
Nwe, T. L., Foo, S. W., & De Silva, L. C. (2003). Speech emotion recognition using hidden markov models. Speech Communication, 41(4), 603–623.
Pantic, M., & Rothkrantz, L. J. (2003). Toward an affect-sensitive multimodal human-computer interaction. Proceedings of the IEEE, 91(9), 1370–1390.
Pohjalainen, J., Räsänen, O., & Kadioglu, S. (2013). Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Computer Speech & Language, 29(1), 145–171.
Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15(11), 1119–1125.
Sato, N., & Obuchi, Y. (2007). Emotion recognition using mel-frequency cepstral coefficients. Information and Media Technologies, 2(3), 835–848.
Scherer, K. R., Banse, R., Wallbott, H. G., & Goldbeck, T. (1991). Vocal cues in emotion encoding and decoding. Motivation and Emotion, 15(2), 123–148.
Sedaaghi, M. H., Ververidis, D., & Kotropoulos, C. (2007). Improving speech emotion recognition using adaptive genetic algorithms. In Proceedings of European Signal Processing Conference (EUSIPCO).
Šimundić, A. M. (2008). Measures of diagnostic accuracy: Basic definitions. Medical and Biological Sciences, 22(4), 61–65.
Somol, P., Pudil, P., Novovičová, J., & Paclık, P. (1999). Adaptive floating search methods in feature selection. Pattern Recognition Letters, 20(11), 1157–1163.
Tao, J., & Tan, T. (2005). Affective computing: A review. In International Conference on Affective computing and intelligent interaction (pp. 981–995). Springer.
Vankayalapati, H., Anne, K., & Kyamakya, K. (2010). Extraction of visual and acoustic features of the driver for monitoring driver ergonomics applied to extended driver assistance systems. In Data and Mobility (pp. 83–94). Springer.
Vankayalapati, H. D., Siddha, V. R., Kyamakya, K., & Anne, K. R. (2011). Driver emotion detection from the acoustic features of the driver for real-time assessment of driving ergonomics process. International Society for Advanced Science and Technology (ISAST) Transactions on Computers and Intelligent Systems, 3(1), 65–73.
Ververidis, D., & Kotropoulos, C. (2006). Fast sequential floating forward selection applied to emotional speech features estimated on des and susas data collections. In textit2006 14th European on Signal Processing Conference
Ververidis, D., & Kotropoulos, C. (2008). Fast and accurate sequential floating forward feature selection with the bayes classifier applied to speech emotion recognition. Signal Processing, 88(12), 2956–2970.
Vogt, T., André, E, & Wagner, J. (2008). Automatic recognition of emotions from speech: A review of the literature and recommendations for practical realisation. In Affect and Emotion in Human-Computer Interaction (pp. 75–91). Springer.
Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEE Transactions on Computers, 100(9), 1100–1103.
Williams, C. E., & Stevens, K. N. (1981). Vocal correlates of emotional states. In J. K. Darby (Ed.), Speech evaluation in psychiatry (pp. 221–240). New York: Grune & Stratton.