An optimal iteration method with application to the Thomas-Fermi equation

Vasile Marinca1, Nicolae Herişanu1
1Politehnica University of Timişoara, Bd. M.Viteazu, nr. 1, 300222, Timişoara, Romania

Tóm tắt

AbstractThe aim of this paper is to introduce a new approximate method, namely the Optimal Parametric Iteration Method (OPIM) to provide an analytical approximate solution to Thomas-Fermi equation. This new iteration approach provides us with a convenient way to optimally control the convergence of the approximate solution. A good agreement between the obtained solution and some well-known results has been demonstrated. The proposed technique can be easily applied to handle other strongly nonlinear problems.

Từ khóa


Tài liệu tham khảo

S. Kobayashi et al., J. Phys. Soc. Jpn. 10, 759 (1955)

B.L. Burrows, P.W. Core, Q. Appl. Math. 42, 73 (1984)

M.S. Wu, Phys. Rev. A 6, 57 (1982)

J.H. He, H.M. Liu, Nonlinear Anal. Theory Methods Appl. 63, 919 (2005)

H. Krutter, J. Comput. Phys. 47, 308 (1982)

C. Grossmann, J. Comput. Phys. 98, 26 (1992)

A. Cedillo, J. Math. Phys. 34, 2713 (1993)

A.M. Wazwaz, Math. Comput. 105, 11 (1999)

S.J. Liao, Appl. Math. Comput. 144, 495 (2003)

S.J. Liao, Beyond perturbation: introduction to the homotopy analysis method (Chapmann & Hall/CRC Press, Boca Raton, 2003)

H. Khan, H. Xu, Phys. Lett. A 365, 111 (2009)

B. Yao, Appl. Math. Comput. 203, 396 (2008)

C.Y. Chan, Y.C. Han, Q. Appl. Math. 45, 591 (1989)

J.I. Ramos, Comput. Phys. Commun. 158, 14 (2004)

J.H. He, G.C. Wu, F. Austin, Nonlinear Science Letters A, 1, 1 (2010)

N. Herişanu, V. Marinca, Nonlinear Science Letters A, 1, 183 (2010)

R.E. Mickens, J. Sound Vib. 16, 185 (1987)

C.W. Lim, B.S. Wu, J. Sound Vib. 257, 202 (2002)

V. Marinca, N. Herişanu, Acta Mech. 184, 231 (2006)

N. Herişanu, V. Marinca, Int. J. Nonlin. Sci. Num. 10, 353 (2009)