An optimal control problem for a spatiotemporal SIR model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Medlock J, Kot M (2003) Spreading disease: integro-differential equations old and new. Math Biosci 184(2):201–222
Bailey NTJ (1975) The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE, London
Anderson RM, May RM, Anderson B (1992) Infectious diseases of humans: dynamics and control, vol 28. Wiley Online Library, New York
Brauer F, Castillo-Chavez C (2001) Mathematical models in population biology and epidemiology, vol 40. Springer, New York
Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton
Huppert A, Katriel G (2013) Mathematical modelling and prediction in infectious disease epidemiology. Clin Microbiol Infect 19(11):999–1005
Yu J, Jiang D, Shi N (2009) Global stability of two-group SIR model with random perturbation. J Math Anal Appl 360(1):235–244
Zhang F, Li Zz, Zhang F (2008) Global stability of an SIR epidemic model with constant infectious period. Appl Math Comput 199(1):285–291
Pathak S, Maiti A, Samanta G (2010) Rich dynamics of an SIR epidemic model. Nonlinear Anal Model Control 15(1):71–81
Ji C, Jiang D, Shi N (2012) The behavior of an SIR epidemic model with stochastic perturbation. Stoch Anal Appl 30(5):755–773
Tornatore E, Buccellato SM, Vetro P (2005) Stability of a stochastic SIR system. Phys A Stat Mech Its Appl 354:111–126
Kuznetsov YA, Piccardi C (1994) Bifurcation analysis of periodic SEIR and SIR epidemic models. J Math Biol 32(2):109–121
Elhia M, Laaroussi A, Rachik M, Rachik Z, Labriji E (2014) Global stability of a susceptible-infected-recovered (SIR) epidemic model with two infectious stages and treatment. Int J Sci Res 3(5):114–121
McCluskey CC (2010) Complete global stability for an SIR epidemic model with delaydistributed or discrete. Nonlinear Anal Real World Appl 11(1):55–59
Song M, Ma W (2006) Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay. Dyn Contin Discret Impuls Syst Ser A 13(2):199
Beretta E, Hara T, Ma W, Takeuchi Y (2001) Global asymptotic stability of an sir epidemic model with distributed time delay. Nonlinear Anal Theory Methods Appl 47(6):4107–4115
Ma W, Song M, Takeuchi Y (2004) Global stability of an sir epidemicmodel with time delay. Appl Math Lett 17(10):1141–1145
Sekiguchi M, Ishiwata E (2010) Global dynamics of a discretized sirs epidemic model with time delay. J Math Anal Appl 371(1):195–202
Guin LN, Mandal PK (2014a) Spatiotemporal dynamics of reaction-diffusion models of interacting populations. Appl Math Model 38(17):4417–4427
Guin LN, Mandal PK (2014b) Spatial pattern in a diffusive predator-prey model with sigmoid ratio-dependent functional response. Int J Biomath 7(05):1450,047
Webb G (1981) A reaction-diffusion model for a deterministic diffusive epidemic. J Math Anal Appl 84(1):150–161
Barbu V (2012) Mathematical methods in optimization of differential systems, vol 310. Springer Science & Business Media, New York
Pazy A (2012) Semigroups of linear operators and applications to partial differential equations, vol 44. Springer Science & Business Media, New York
Vrabie I (2003) C0-semigroups and applications, vol 191. North-Holland Mathematics Studies, North-Holland, Amsterdam
Smoller J (2012) Shock waves and reactiondiffusion equations, vol 258. Springer Science & Business Media, New York
Brezis H, Ciarlet PG, Lions JL (1999) Analyse fonctionnelle: théorie et applications, vol 91. Dunod Paris, Malakoff