An opposition equilibrium optimizer for context-sensitive entropy dependency based multilevel thresholding of remote sensing images
Tài liệu tham khảo
Haindl, 2016, A competition in unsupervised color image segmentation, Pattern Recognit., 57, 136, 10.1016/j.patcog.2016.03.003
GIS (Geographic Information System) | National Geographic Society, (n.d.). https://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/ (accessed August 9, 2020).
Bhandari, 2014, Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl., 41, 3538, 10.1016/j.eswa.2013.10.059
Bhandari, 2016, A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms, Expert Syst. Appl., 63, 112, 10.1016/j.eswa.2016.06.044
Bhandari, 2015, Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms, Expert Syst. Appl.
Jia, 2019, Masi Entropy for satellite color image segmentation using tournament-based lévy multiverse optimization algorithm, Remote Sens., 11, 942, 10.3390/rs11080942
Sankur, 2001, Image thresholding techniques: a survey over categories, Pattern Recognit., 34, 1573
Zaitoun, 2015, Survey on image segmentation techniques, Procedia Comput. Sci., 65, 797, 10.1016/j.procs.2015.09.027
Sezgin, 2004, Survey over image thresholding techniques and quantitative performance evaluation, J. Electron. Imaging, 13, 146, 10.1117/1.1631315
Otsu, 1979, IEEE Trans. Syst. Man. Cybern. C, 62, 10.1109/TSMC.1979.4310076
Portes de Albuquerque, 2004, Image thresholding using Tsallis entropy, Pattern Recognit. Lett., 25, 1059, 10.1016/j.patrec.2004.03.003
Kapur, 1985, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vision, Graph. Image Process., 29, 273, 10.1016/0734-189X(85)90125-2
Masi, 2005, A step beyond Tsallis and Rényi entropies, Phys. Lett. Sect. A Gen. At. Solid State Phys., 338, 217
A. Renyi, On Measures of Entropy and Information, in: Proc. Fourth Berkeley Symp. Math. Stat. Probab. Vol. 1 Contrib. to Theory Stat., University of California Press, Berkeley, Calif., 1961: pp. 547–561. https://projecteuclid.org/euclid.bsmsp/1200512181.
Pal, 1996, On minimum cross-entropy thresholding, Pattern Recognit., 29, 575, 10.1016/0031-3203(95)00111-5
Wunnava, 2020, A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer, Eng. Appl. Artif. Intell., 94, 10.1016/j.engappai.2020.103836
Abutaleb, 1989, Automatic thresholding of gray-level pictures using two-dimensional entropy, Comput. Vision, Graph. Image Process., 47, 22, 10.1016/0734-189X(89)90051-0
J. Liu, W. Li, Y. Tian, Automatic thresholding of gray-level pictures using two-dimensional Otsu method, (1991) 325–327.
Sahoo, 2004, A thresholding method based on two-dimensional Renyi’s entropy, Pattern Recognit., 37, 1149, 10.1016/j.patcog.2003.10.008
Sahoo, 2006, Image thresholding using two-dimensional Tsallis–Havrda–Charvát entropy, Pattern Recognit. Lett., 27, 520, 10.1016/j.patrec.2005.09.017
Wunnava, 2020, A differential evolutionary adaptive Harris hawks optimization for two dimensional practical Masi entropy-based multilevel image thresholding, J. King Saud Univ. - Comput. Inf. Sci.
Panda, 2017, An evolutionary gray gradient algorithm for multilevel thresholding of brain MR images using soft computing techniques, Appl. Soft Comput., 50, 94, 10.1016/j.asoc.2016.11.011
Wunnava, 2020, An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding, Appl. Soft Comput., 95, 10.1016/j.asoc.2020.106526
Patra, 2014, A novel context sensitive multilevel thresholding for image segmentation, Appl. Soft Comput., 23, 122, 10.1016/j.asoc.2014.06.016
Pare, 2016, A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve, Appl. Soft Comput., 47, 76, 10.1016/j.asoc.2016.05.040
Pare, 2017, An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix, Expert Syst. Appl., 87, 335, 10.1016/j.eswa.2017.06.021
Díaz-Cortés, 2018, A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm, Infrared Phys. Technol., 93, 346, 10.1016/j.infrared.2018.08.007
Kandhway, 2020, Spatial context-based optimal multilevel energy curve thresholding for image segmentation using soft computing techniques, Neural Comput. Appl., 32, 8901, 10.1007/s00521-019-04381-9
A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowledge-Based Syst. 191 (2020) 105190. https://doi.org/https://doi.org/ 10.1016/j.knosys.2019.105190.
Tizhoosh, 2005, Opposition-Based Learning: A New Scheme for Machine Intelligence, Int. Conf. Comput. Intell. Model. Control Autom. Int. Conf. Intell. Agents, Web Technol. Internet Commer., 695
Dhargupta, 2020, Selective Opposition based Grey Wolf Optimization, Expert Syst. Appl., 151, 10.1016/j.eswa.2020.113389
Yao, 1999, Evolutionary programming made faster, Evol. Comput. IEEE Trans., 3, 82, 10.1109/4235.771163
Naik, 2016, A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition, Appl. Soft Comput., 38, 661, 10.1016/j.asoc.2015.10.039
J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, in: 2013.
Simon, 2009, Biogeography-Based Optimization, Evol. Comput. IEEE Trans., 12, 702, 10.1109/TEVC.2008.919004
Heidari, 2019, Harris hawks optimization: Algorithm and applications, Futur. Gener. Comput. Syst., 97, 849, 10.1016/j.future.2019.02.028
Shadravan, 2019, The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems, Eng. Appl. Artif. Intell., 80, 20, 10.1016/j.engappai.2019.01.001
Mirjalili, 2016, The Whale Optimization Algorithm, Adv. Eng. Softw., 95, 51, 10.1016/j.advengsoft.2016.01.008
Mirjalili, 2014, Grey Wolf Optimizer, Adv. Eng. Softw., 69, 46, 10.1016/j.advengsoft.2013.12.007
Tanabe, 2014, Improving the search performance of SHADE using linear population size reduction, 1658
Carrasco, 2020, Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review, Swarm Evol. Comput., 54, 10.1016/j.swevo.2020.100665
Zar, 1999
Holm, 1979, A Simple Sequentially Rejective Multiple Test Procedure, Scand, J. Stat., 6, 65
Landsat Image Gallery, (n.d.). https://landsat.visibleearth.nasa.gov/ (accessed June 12, 2020).
Agrawal, 2013, Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm, Swarm Evol. Comput., 11, 16, 10.1016/j.swevo.2013.02.001
Lin Zhang, 2011, FSIM: A Feature Similarity Index for Image Quality Assessment, IEEE Trans. Image Process., 20, 2378, 10.1109/TIP.2011.2109730
Zhou, 2004, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 600, 10.1109/TIP.2003.819861
Ghosh, 2007, A Context-Sensitive Technique for Unsupervised Change Detection Based on Hopfield-Type Neural Networks, IEEE Trans. Geosci. Remote Sens., 45, 778, 10.1109/TGRS.2006.888861
Halim, 2020, Performance assessment of the metaheuristic optimization algorithms: an exhaustive review, Artif. Intell. Rev.
Liu, 2013, A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model, Appl. Soft Comput., 13, 3792, 10.1016/j.asoc.2013.05.010