An operational approach to the Tau method for the numerical solution of non-linear differential equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fox, L., Parker, J. B.: Chebyshev polynomials in numerical analysis. Oxford: O. U. P. 1968.
Lanczos, C.: Trigonometric interpolation of empirical and analytical functions. J. Math. Phys.17, 123–139 (1938).
Luke, Y.: The special functions and their approximations, Vol. II. New York: Academic Press 1969.
Ortiz, E. L.: On the generation of the canonical polynomials associated with certain linear differential operators. Imperial College Res. Rep., 1–22 (1964).
Ortiz, E. L.: Sur quelques nouvelles applications de la Méthode Tau. Seminaire Lions, Analyse et Contrôle de Systèmes, IRIA, Paris, 247–257 (1975).
Ortiz, E. L.: Step by step Tau method. Part I: Piecewise polynomial approximations. Comp. and Math. Appl.1, 381–392 (1975).
Ortiz, E. L.: On the numerical solution of non-linear and functional differential equations with the Tau method. In: Numerical treatment of differential equations in applications (Ansorge, R., Törnig, W., Hrsg.), S. 127–139. Berlin-Heidelberg-New York: Springer 1978.
Ortiz, E. L., Purser, W. F. C., Rodriguez Cañizarez, F. J.: Automation of the Tau method. Imperial College Res. Rep., 1–58. Presented at the Conference on Numerical Analysis, Royal Irish Academy, Dublin, 1972.
Ortiz, E. L., Pham, A.: On the convergence of the non-linear formulation of the Tau method. (To appear elsewhere.)
Ortiz, E. L., Samara, H.: Polynomial methods for differential eigenvalue problems. Imperial College Res. Rep. 1-36 (1978).
Ortiz, E. L., Samara, H.: Some equivalence results concerning a class of polynomial methods for the numerical solution of differential equations. Imperial College Res. Rep., 1–34 (1978).