An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arimoto, S., 1996. Control Theory of Nonlinear Mechanical Systems: a Passivity-Based and Circuit-Theoretic Approach. Clarendon Press, Oxford, UK.
Astudillo, L., Castillo, O., Aguilar, L.T., Martínez, R., 2007. Hybrid control for an autonomous wheeled mobile robot under perturbed torques. LNCS, 4529:594–603. [doi:10.1007/978-3-540-72950-1_59]
Castillo, O., Aguilar, L.T., Cardenas, S., 2006. Fuzzy logic tracking control for unicycle mobile robots. Eng. Lett., 13(2):73–77.
Divelbiss, A.W., Wen, J.T., 1997. Trajectory tracking control of a car-trailer system. IEEE Trans. Control Syst. Technol., 5(3):269–278. [doi:10.1109/87.572125]
Kolmanovsky, I., McClamroch, N.H., 1995. Developments in nonholonomic control systems. IEEE Control Syst. Mag., 15(6):20–36. [doi:10.1109/37.476384]
Kumar, U., Sukaranam, N., 2008. Backstepping based trajectory tracking control of a four wheeled mobile robot. Int. J. Adv. Robot. Syst., 5(4):403–410.
Li, S.H., Tian, Y.P., 2000. Trajectory tracking control of mobile vehicle. Control Dec., 15(5):626–628.
Likhachev, M., Ferguson, D., 2009. Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res., 28(8):933–945. [doi:10.1177/0278364909340445]
Luca, A.R., Benedetto, M.D., 1993. Control of nonholonomic systems via dynamic compensation. Kybernetica, 29(6): 593-608.
Martínez, R., Castillo, O., Aguilar, L.T., 2009. Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci., 179(13):2158–2174. [doi:10.1016/j. ins.2008.12.028]
Morin, P., Samson, C., 2000. Practical Stabilization of a Class of Nonlinear Systems. Application to Chained Systems and Mobile Robots. Proc. 39th IEEE Conf. on Decision Control, p.2989–2994. [doi:10.1109/CDC.2000.914274]
Narvydas, G., Simutis, R., Raudonis, V., 2007. Autonomous Mobile Robot Control Using Fuzzy Logic and Genetic Algorithm. 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, p.460–464. [doi:10.1109/IDAACS.2007.4488460]
Oriolo, G., de Luca, A., Vendittelli, M., 2002. WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans. Control Syst. Technol., 10(6):835–852. [doi:10.1109/TCST.2002.804116]
Pivtoraiko, M., Kelly, A., 2005. Generating Near Minimal Spanning Control Sets for Constrained Motion Planning in Discrete State Spaces. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3231–3237. [doi:10.1109/IROS.2005.1545046]
Pivtoraiko, M., Knepper, R.A., Kelly, A., 2009. Differentially constrained mobile robot motion planning in state lattices. J. Field Robot., 26(3):308–333. [doi:10.1002/rob.20285]
Samson, C., 1993. Time-varying feedback stabilization of car-like mobile robots. Int. J. Robot. Res., 12(1):55–64. [doi:10.1177/027836499301200104]
Slotine, J.J.E., Li, W., 1987. On the adaptive control of robot manipulators. Int. J. Robot. Res., 6(3):49–59. [doi:10. 1177/027836498700600303]
Tomei, P., 2000. Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control, 45(11):2164–2169. [doi:10.1109/9.887661]
Velagic, J., Osmic, N., Lacevic, B., 2008. Neural network controller for mobile robot motion control. World Acad. Sci. Eng. Technol., 47:193–198.
Walsh, G., Tilbury, D., Sastry, S., Murray, R., Laumond, J.P., 1994. Stabilization of trajectories for systems with nonholonomic constraints. IEEE Trans. Autom. Control, 39(1):216–222. [doi:10.1109/9.273373]