An iterative Bayesian filtering framework for fast and automated calibration of DEM models

Hongyang Cheng1, Takayuki Shuku2, Klaus Thoeni3, Pamela Tempone4, Stefan Luding1, Vanessa Magnanimo1
1Multi-Scale Mechanics (MSM), Faculty of Engineering Technology, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
2Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima naka, Kita-ku, Okayama 700-8530, Japan
3Centre for Geotechnical Science and Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
4Division of Exploration and Production, Eni SpA, Milano, Lombardy, Italy

Tài liệu tham khảo

Cundall, 1979, A discrete numerical model for granular assemblies, Géotechnique, 29, 47, 10.1680/geot.1979.29.1.47 Li, 2011, A bridging scale method for granular materials with discrete particle assembly – Cosserat continuum modeling, Comput. Geotech., 38, 1052, 10.1016/j.compgeo.2011.07.001 Wellmann, 2012, A two-scale model of granular materials, Comput. Methods Appl. Mech. Engrg., 205–208, 46, 10.1016/j.cma.2010.12.023 Guo, 2016, 3D multiscale modeling of strain localization in granular media, Comput. Geotech., 80, 360, 10.1016/j.compgeo.2016.01.020 Effeindzourou, 2017, Efficient discrete modelling of composite structures for rockfall protection, Comput. Geotech., 87, 99, 10.1016/j.compgeo.2017.02.005 Yuan, 2017, A pore-scale method for hydromechanical coupling in deformable granular media, Comput. Methods Appl. Mech. Engrg., 318, 1066, 10.1016/j.cma.2017.02.024 Cheng, 2017, A simple multiscale model for granular soils with geosynthetic inclusion, 445 Fuchs, 2014, Rolling, sliding and torsion of micron-sized silica particles: Experimental, numerical and theoretical analysis, Granul. Matter, 16, 281, 10.1007/s10035-014-0481-9 Gilson, 2014, Contact models based on experimental characterization of irregular shaped, micrometer-sized particles, Granul. Matter, 16, 313, 10.1007/s10035-013-0464-2 Iwashita, 1998, Rolling resistance at contacts in simulation of shear band development by DEM, J. Eng. Mech., 124, 285, 10.1061/(ASCE)0733-9399(1998)124:3(285) Jiang, 2005, A novel discrete model for granular material incorporating rolling resistance, Comput. Geotech., 32, 340, 10.1016/j.compgeo.2005.05.001 Wensrich, 2012, Rolling friction as a technique for modelling particle shape in DEM, Powder Technol., 217, 409, 10.1016/j.powtec.2011.10.057 Kulatilake, 2001, Physical and particle flow modeling of jointed rock block behavior under uniaxial loading, Int. J. Rock Mech. Min. Sci., 38, 641, 10.1016/S1365-1609(01)00025-9 Coetzee, 2017, Review: Calibration of the discrete element method, Powder Technol., 310, 104, 10.1016/j.powtec.2017.01.015 Benvenuti, 2016, Identification of DEM simulation parameters by artificial neural networks and bulk experiments, Powder Technol., 291, 456, 10.1016/j.powtec.2016.01.003 Yoon, 2007, Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation, Int. J. Rock Mech. Min. Sci., 44, 871, 10.1016/j.ijrmms.2007.01.004 Johnstone, 2010 Hanley, 2011, Application of Taguchi methods to DEM calibration of bonded agglomerates, Powder Technol., 210, 230, 10.1016/j.powtec.2011.03.023 Rackl, 2017, A methodical calibration procedure for discrete element models, Powder Technol., 307, 73, 10.1016/j.powtec.2016.11.048 Wilkinson, 2017, A parametric evaluation of powder flowability using a freeman rheometer through statistical and sensitivity analysis: A discrete element method (DEM) study, Comput. Chem. Eng., 97, 161, 10.1016/j.compchemeng.2016.11.034 Lewis, 1992, Coarse optimization for complex systems: An application of orthogonal experiments, Comput. Methods Appl. Mech. Engrg., 94, 63, 10.1016/0045-7825(92)90157-F Beyer, 2007, Robust optimization – a comprehensive survey, Comput. Methods Appl. Mech. Engrg., 196, 3190, 10.1016/j.cma.2007.03.003 Oden, 2010, Computer predictions with quantified uncertainty, Part I, SIAM News, 43 Oden, 2010, Computer predictions with quantified uncertainty, Part II, SIAM News, 43 Hadjidoukas, 2014, Bayesian Uncertainty quantification and propagation for discrete element simulations of granular materials, Comput. Methods Appl. Mech. Engrg., 282, 218, 10.1016/j.cma.2014.07.017 Hadjidoukas, 2015, Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models, J. Comput. Phys., 284, 1, 10.1016/j.jcp.2014.12.006 Angelikopoulos, 2012, Bayesian Uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework, J. Chem. Phys., 137, 10.1063/1.4757266 Farrell, 2015, A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems, J. Comput. Phys., 295, 189, 10.1016/j.jcp.2015.03.071 Farrell, 2014, CaLibration and validation of coarse-grained models of atomic systems: Application to semiconductor manufacturing, Comput. Mech., 54, 3, 10.1007/s00466-014-1028-y Kulakova, 2017, Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations, Sci. Rep., 7, 16576, 10.1038/s41598-017-16314-4 Evensen, 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res.: Oceans, 99, 10143, 10.1029/94JC00572 Nakano, 2007, Merging particle filter for sequential data assimilation, Nonlinear Process. Geophys., 14, 395, 10.5194/npg-14-395-2007 Manoli, 2015, An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment, J. Comput. Phys., 283, 37, 10.1016/j.jcp.2014.11.035 Rossi, 2015, Coupled inverse modeling of a controlled irrigation experiment using multiple hydro-geophysical data, Adv. Water Resour., 82, 150, 10.1016/j.advwatres.2015.03.008 Cheng, 2017, CaLibration of micromechanical parameters for DEM simulations by using the particle filter, EPJ Web Conf., 140 Cheng, 2018, Probabilistic calibration of discrete element simulations using the sequential quasi-Monte Carlo filter, Granul. Matter, 20, 11, 10.1007/s10035-017-0781-y Ruiz, 2017, Particle smoothing for hidden diffusion processes: adaptive path integral smoother, IEEE Trans. Signal Process., 65, 3191, 10.1109/TSP.2017.2686340 Kappen, 2016, Adaptive importance sampling for control and inference, J. Stat. Phys., 162, 1244, 10.1007/s10955-016-1446-7 Chavali, 2014, Hierarchical particle filtering for multi-modal data fusion with application to multiple-target tracking, Signal Process., 97, 207, 10.1016/j.sigpro.2013.10.015 Fan, 2015, Iterative particle filter for visual tracking, Signal Process. Image Commun., 36, 140, 10.1016/j.image.2015.07.001 Yin, 2015, Intelligent particle filter and its application to fault detection of nonlinear system, IEEE Trans. Ind. Electron., 62, 3852 I. Yoshida, T. Shuku, Particle filter with Gaussian mixture model for inverse problem, in: Proc. 6th Asian-Pacific Symp. Struct. Reliab. its Appl., 2016, pp. 643–648. Z. Medina-Cedina, H.D.V. Khoa, Probabilistic calibration of discrete particle models for geomaterials, in: Proc. of the 17th Int. Conference on Soil Mechanics and Geotechnical Engineering, 2009, pp. 704–707. Oden, 2013, Virtual model validation of complex multiscale systems: Applications to nonlinear elastostatics, Comput. Methods Appl. Mech. Engrg., 266, 162, 10.1016/j.cma.2013.07.011 Farrell-Maupin, 2017, Adaptive selection and validation of models of complex systems in the presence of uncertainty, Res. Math. Sci., 4, 14, 10.1186/s40687-017-0104-2 Oden, 2017, Predictive computational science: computer predictions in the presence of uncertainty Šmilauer, 2015 Bagi, 2005, An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies, Granul. Matter, 7, 31, 10.1007/s10035-004-0187-5 Magnanimo, 2008, Characterizing the shear and bulk moduli of an idealized granular material, Europhys. Lett., 81, 34006, 10.1209/0295-5075/81/34006 Vlahinić, 2014, Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images, Granul. Matter, 16, 9, 10.1007/s10035-013-0460-6 Zhao, 2016, 3D quantitative shape analysis on form, roundness, and compactness with uCT, Powder Technol., 291, 262, 10.1016/j.powtec.2015.12.029 Särkkä, 2013 Halton, 1994, Sequential monte carlo techniques for the solution of linear systems, J. Sci. Comput., 9, 213, 10.1007/BF01578388 Gerber, 2015, Sequential quasi Monte Carlo, J. R. Stat. Soc. Ser. B Stat. Methodol., 77, 509, 10.1111/rssb.12104 van Leeuwen, 2010, Nonlinear data assimilation in geosciences: an extremely efficient particle filter, Q. J. R. Meteorol. Soc., 136, 1991, 10.1002/qj.699 Kitagawa, 2001, 177 Blei, 2006, Variational inference for dirichlet process mixtures, Bayesian Anal., 1, 121, 10.1214/06-BA104 Rasmussen, 1999, The infinite gaussian mixture model, 554 Bishop, 2006 Caron, 2008, Bayesian Inference for linear dynamic models with dirichlet process mixtures, IEEE Trans. Signal Process., 56, 71, 10.1109/TSP.2007.900167 McAuliffe, 2006, Nonparametric empirical bayes for the dirichlet process mixture model, Stat. Comput., 16, 5, 10.1007/s11222-006-5196-2 Görür, 2010, Dirichlet process gaussian mixture models: Choice of the base distribution, J. Comput. Sci. Tech., 25, 653, 10.1007/s11390-010-9355-8 Ferguson, 1973, A bayesian analysis of some nonparametric problems, Ann. Statist., 1, 209, 10.1214/aos/1176342360 Sethuraman, 1994, A constructive definition of dirichlet priors, Statist. Sinica, 4, 639 Pedregosa, 2011, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825 Arganda-Carreras, 2017, Trainable weka segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, 9, 676 Legland, 2016, Morpholibj: integrated library and plugins for mathematical morphology with ImageJ, Bioinformatics, 13, btw413, 10.1093/bioinformatics/btw413 Tengattini, 2015, Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D, Meas. Sci. Technol., 26, 10.1088/0957-0233/26/9/095606 Cheng, 2016, Numerical study on stress states and fabric anisotropies in soilbags using the DEM, Comput. Geotech., 76, 170, 10.1016/j.compgeo.2016.03.006 Cheng, 2017, An analytical solution for geotextile-wrapped soil based on insights from DEM analysis, Geotext. Geomembranes, 10.1016/j.geotexmem.2017.05.001 De Rainville, 2012, Evolutionary optimization of low-discrepancy sequences, ACM Trans. Model. Comput. Simul., 22, 9:1 O’Sullivan, 2011 Do, 2018, A calibration framework for discrete element model parameters using genetic algorithms, Adv. Powder Technol., 29, 1393, 10.1016/j.apt.2018.03.001 Chernatynskiy, 2013, Uncertainty quantification in multiscale simulation of materials: a prospective, Annu. Rev. Mater. Res., 43, 157, 10.1146/annurev-matsci-071312-121708 Zhao, 2018, Thermomechanical formulation for micromechanical elasto-plasticity in granular materials, Int. J. Solids Struct., 138, 64, 10.1016/j.ijsolstr.2017.12.029 Feng, 2017, Towards stochastic discrete element modelling of spherical particles with surface roughness: A normal interaction law, Comput. Methods Appl. Mech. Engrg., 315, 247, 10.1016/j.cma.2016.10.031 Matouš, 2017, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys., 330, 192, 10.1016/j.jcp.2016.10.070