An iterative Bayesian filtering framework for fast and automated calibration of DEM models
Tài liệu tham khảo
Cundall, 1979, A discrete numerical model for granular assemblies, Géotechnique, 29, 47, 10.1680/geot.1979.29.1.47
Li, 2011, A bridging scale method for granular materials with discrete particle assembly – Cosserat continuum modeling, Comput. Geotech., 38, 1052, 10.1016/j.compgeo.2011.07.001
Wellmann, 2012, A two-scale model of granular materials, Comput. Methods Appl. Mech. Engrg., 205–208, 46, 10.1016/j.cma.2010.12.023
Guo, 2016, 3D multiscale modeling of strain localization in granular media, Comput. Geotech., 80, 360, 10.1016/j.compgeo.2016.01.020
Effeindzourou, 2017, Efficient discrete modelling of composite structures for rockfall protection, Comput. Geotech., 87, 99, 10.1016/j.compgeo.2017.02.005
Yuan, 2017, A pore-scale method for hydromechanical coupling in deformable granular media, Comput. Methods Appl. Mech. Engrg., 318, 1066, 10.1016/j.cma.2017.02.024
Cheng, 2017, A simple multiscale model for granular soils with geosynthetic inclusion, 445
Fuchs, 2014, Rolling, sliding and torsion of micron-sized silica particles: Experimental, numerical and theoretical analysis, Granul. Matter, 16, 281, 10.1007/s10035-014-0481-9
Gilson, 2014, Contact models based on experimental characterization of irregular shaped, micrometer-sized particles, Granul. Matter, 16, 313, 10.1007/s10035-013-0464-2
Iwashita, 1998, Rolling resistance at contacts in simulation of shear band development by DEM, J. Eng. Mech., 124, 285, 10.1061/(ASCE)0733-9399(1998)124:3(285)
Jiang, 2005, A novel discrete model for granular material incorporating rolling resistance, Comput. Geotech., 32, 340, 10.1016/j.compgeo.2005.05.001
Wensrich, 2012, Rolling friction as a technique for modelling particle shape in DEM, Powder Technol., 217, 409, 10.1016/j.powtec.2011.10.057
Kulatilake, 2001, Physical and particle flow modeling of jointed rock block behavior under uniaxial loading, Int. J. Rock Mech. Min. Sci., 38, 641, 10.1016/S1365-1609(01)00025-9
Coetzee, 2017, Review: Calibration of the discrete element method, Powder Technol., 310, 104, 10.1016/j.powtec.2017.01.015
Benvenuti, 2016, Identification of DEM simulation parameters by artificial neural networks and bulk experiments, Powder Technol., 291, 456, 10.1016/j.powtec.2016.01.003
Yoon, 2007, Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation, Int. J. Rock Mech. Min. Sci., 44, 871, 10.1016/j.ijrmms.2007.01.004
Johnstone, 2010
Hanley, 2011, Application of Taguchi methods to DEM calibration of bonded agglomerates, Powder Technol., 210, 230, 10.1016/j.powtec.2011.03.023
Rackl, 2017, A methodical calibration procedure for discrete element models, Powder Technol., 307, 73, 10.1016/j.powtec.2016.11.048
Wilkinson, 2017, A parametric evaluation of powder flowability using a freeman rheometer through statistical and sensitivity analysis: A discrete element method (DEM) study, Comput. Chem. Eng., 97, 161, 10.1016/j.compchemeng.2016.11.034
Lewis, 1992, Coarse optimization for complex systems: An application of orthogonal experiments, Comput. Methods Appl. Mech. Engrg., 94, 63, 10.1016/0045-7825(92)90157-F
Beyer, 2007, Robust optimization – a comprehensive survey, Comput. Methods Appl. Mech. Engrg., 196, 3190, 10.1016/j.cma.2007.03.003
Oden, 2010, Computer predictions with quantified uncertainty, Part I, SIAM News, 43
Oden, 2010, Computer predictions with quantified uncertainty, Part II, SIAM News, 43
Hadjidoukas, 2014, Bayesian Uncertainty quantification and propagation for discrete element simulations of granular materials, Comput. Methods Appl. Mech. Engrg., 282, 218, 10.1016/j.cma.2014.07.017
Hadjidoukas, 2015, Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models, J. Comput. Phys., 284, 1, 10.1016/j.jcp.2014.12.006
Angelikopoulos, 2012, Bayesian Uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework, J. Chem. Phys., 137, 10.1063/1.4757266
Farrell, 2015, A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems, J. Comput. Phys., 295, 189, 10.1016/j.jcp.2015.03.071
Farrell, 2014, CaLibration and validation of coarse-grained models of atomic systems: Application to semiconductor manufacturing, Comput. Mech., 54, 3, 10.1007/s00466-014-1028-y
Kulakova, 2017, Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations, Sci. Rep., 7, 16576, 10.1038/s41598-017-16314-4
Evensen, 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res.: Oceans, 99, 10143, 10.1029/94JC00572
Nakano, 2007, Merging particle filter for sequential data assimilation, Nonlinear Process. Geophys., 14, 395, 10.5194/npg-14-395-2007
Manoli, 2015, An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment, J. Comput. Phys., 283, 37, 10.1016/j.jcp.2014.11.035
Rossi, 2015, Coupled inverse modeling of a controlled irrigation experiment using multiple hydro-geophysical data, Adv. Water Resour., 82, 150, 10.1016/j.advwatres.2015.03.008
Cheng, 2017, CaLibration of micromechanical parameters for DEM simulations by using the particle filter, EPJ Web Conf., 140
Cheng, 2018, Probabilistic calibration of discrete element simulations using the sequential quasi-Monte Carlo filter, Granul. Matter, 20, 11, 10.1007/s10035-017-0781-y
Ruiz, 2017, Particle smoothing for hidden diffusion processes: adaptive path integral smoother, IEEE Trans. Signal Process., 65, 3191, 10.1109/TSP.2017.2686340
Kappen, 2016, Adaptive importance sampling for control and inference, J. Stat. Phys., 162, 1244, 10.1007/s10955-016-1446-7
Chavali, 2014, Hierarchical particle filtering for multi-modal data fusion with application to multiple-target tracking, Signal Process., 97, 207, 10.1016/j.sigpro.2013.10.015
Fan, 2015, Iterative particle filter for visual tracking, Signal Process. Image Commun., 36, 140, 10.1016/j.image.2015.07.001
Yin, 2015, Intelligent particle filter and its application to fault detection of nonlinear system, IEEE Trans. Ind. Electron., 62, 3852
I. Yoshida, T. Shuku, Particle filter with Gaussian mixture model for inverse problem, in: Proc. 6th Asian-Pacific Symp. Struct. Reliab. its Appl., 2016, pp. 643–648.
Z. Medina-Cedina, H.D.V. Khoa, Probabilistic calibration of discrete particle models for geomaterials, in: Proc. of the 17th Int. Conference on Soil Mechanics and Geotechnical Engineering, 2009, pp. 704–707.
Oden, 2013, Virtual model validation of complex multiscale systems: Applications to nonlinear elastostatics, Comput. Methods Appl. Mech. Engrg., 266, 162, 10.1016/j.cma.2013.07.011
Farrell-Maupin, 2017, Adaptive selection and validation of models of complex systems in the presence of uncertainty, Res. Math. Sci., 4, 14, 10.1186/s40687-017-0104-2
Oden, 2017, Predictive computational science: computer predictions in the presence of uncertainty
Šmilauer, 2015
Bagi, 2005, An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies, Granul. Matter, 7, 31, 10.1007/s10035-004-0187-5
Magnanimo, 2008, Characterizing the shear and bulk moduli of an idealized granular material, Europhys. Lett., 81, 34006, 10.1209/0295-5075/81/34006
Vlahinić, 2014, Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images, Granul. Matter, 16, 9, 10.1007/s10035-013-0460-6
Zhao, 2016, 3D quantitative shape analysis on form, roundness, and compactness with uCT, Powder Technol., 291, 262, 10.1016/j.powtec.2015.12.029
Särkkä, 2013
Halton, 1994, Sequential monte carlo techniques for the solution of linear systems, J. Sci. Comput., 9, 213, 10.1007/BF01578388
Gerber, 2015, Sequential quasi Monte Carlo, J. R. Stat. Soc. Ser. B Stat. Methodol., 77, 509, 10.1111/rssb.12104
van Leeuwen, 2010, Nonlinear data assimilation in geosciences: an extremely efficient particle filter, Q. J. R. Meteorol. Soc., 136, 1991, 10.1002/qj.699
Kitagawa, 2001, 177
Blei, 2006, Variational inference for dirichlet process mixtures, Bayesian Anal., 1, 121, 10.1214/06-BA104
Rasmussen, 1999, The infinite gaussian mixture model, 554
Bishop, 2006
Caron, 2008, Bayesian Inference for linear dynamic models with dirichlet process mixtures, IEEE Trans. Signal Process., 56, 71, 10.1109/TSP.2007.900167
McAuliffe, 2006, Nonparametric empirical bayes for the dirichlet process mixture model, Stat. Comput., 16, 5, 10.1007/s11222-006-5196-2
Görür, 2010, Dirichlet process gaussian mixture models: Choice of the base distribution, J. Comput. Sci. Tech., 25, 653, 10.1007/s11390-010-9355-8
Ferguson, 1973, A bayesian analysis of some nonparametric problems, Ann. Statist., 1, 209, 10.1214/aos/1176342360
Sethuraman, 1994, A constructive definition of dirichlet priors, Statist. Sinica, 4, 639
Pedregosa, 2011, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825
Arganda-Carreras, 2017, Trainable weka segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, 9, 676
Legland, 2016, Morpholibj: integrated library and plugins for mathematical morphology with ImageJ, Bioinformatics, 13, btw413, 10.1093/bioinformatics/btw413
Tengattini, 2015, Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D, Meas. Sci. Technol., 26, 10.1088/0957-0233/26/9/095606
Cheng, 2016, Numerical study on stress states and fabric anisotropies in soilbags using the DEM, Comput. Geotech., 76, 170, 10.1016/j.compgeo.2016.03.006
Cheng, 2017, An analytical solution for geotextile-wrapped soil based on insights from DEM analysis, Geotext. Geomembranes, 10.1016/j.geotexmem.2017.05.001
De Rainville, 2012, Evolutionary optimization of low-discrepancy sequences, ACM Trans. Model. Comput. Simul., 22, 9:1
O’Sullivan, 2011
Do, 2018, A calibration framework for discrete element model parameters using genetic algorithms, Adv. Powder Technol., 29, 1393, 10.1016/j.apt.2018.03.001
Chernatynskiy, 2013, Uncertainty quantification in multiscale simulation of materials: a prospective, Annu. Rev. Mater. Res., 43, 157, 10.1146/annurev-matsci-071312-121708
Zhao, 2018, Thermomechanical formulation for micromechanical elasto-plasticity in granular materials, Int. J. Solids Struct., 138, 64, 10.1016/j.ijsolstr.2017.12.029
Feng, 2017, Towards stochastic discrete element modelling of spherical particles with surface roughness: A normal interaction law, Comput. Methods Appl. Mech. Engrg., 315, 247, 10.1016/j.cma.2016.10.031
Matouš, 2017, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys., 330, 192, 10.1016/j.jcp.2016.10.070