An iterated pseudospectral method for delay partial differential equations

Applied Numerical Mathematics - Tập 55 - Trang 227-250 - 2005
J. Mead1, B. Zubik-Kowal1
1Department of Mathematics, Boise State University, 1910 University Drive, Boise, ID 83725, USA

Tài liệu tham khảo

Bartoszewski, 1999, On the convergence of waveform relaxation methods for differential-functional systems of equations, J. Math. Anal. Appl., 235, 478, 10.1006/jmaa.1999.6380 Bartoszewski, 2000, On error estimates for waveform relaxation methods for delay differential equations, SIAM J. Numer. Anal., 38, 639, 10.1137/S003614299935591X Basse, 2003, A mathematical model for analysis of the cell cycle in human tumors, J. Math.l Biology, 47, 295, 10.1007/s00285-003-0203-0 Bellen, 2003 Burrage, 1995 Burrage, 1996, Preconditioning waveform relaxation iterations for differential systems, BIT, 36, 54, 10.1007/BF01740544 Burrage, 1996, The performance of preconditioned waveform relaxation techniques for pseudospectral methods, Numer. Methods Partial Differential Equations, 12, 245, 10.1002/(SICI)1098-2426(199603)12:2<245::AID-NUM7>3.0.CO;2-Q Canuto, 1988 Chyan, 1991, A model of proliferating cell populations with correlation of mother-daughter mitotic times, Ann. Mat. Pura Appl., 157, 1, 10.1007/BF01759296 Don, 1997, Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique, SIAM J. Sci. Comput., 18, 1040, 10.1137/S1064827594274607 Fornberg, 1996 Hairer, 1993 Hairer, 1996 Hesthaven, 1999, Spectral collocation time-domain modelling of diffractive optical elements, J. Comput. Phys., 155, 287, 10.1006/jcph.1999.6333 Hundsdorfer, 2003 in 't Hout, 1995, On the convergence of waveform relaxation methods for stiff nonlinear ordinary differential equations, Appl. Numer. Math., 18, 175, 10.1016/0168-9274(95)00052-V Jackiewicz, 1996, Convergence of waveform relaxation methods for differential-algebraic systems, SIAM J. Numer. Anal., 33, 2303, 10.1137/S0036142992233098 Jackiewicz, 1997, Waveform relaxation methods for functional-differential systems of neutral type, J. Math. Anal. Appl., 207, 255, 10.1006/jmaa.1997.5308 Jackiewicz, 1998, Pseudospectra of waveform relaxation operators, Comput. Math. Appl., 36, 67, 10.1016/S0898-1221(98)00184-9 Jackiewicz, 2004, Spectral versus pseudospectral solutions of the wave equation by waveform relaxation methods, J. Sci. Comput., 20, 1, 10.1023/A:1025900611963 Kosloff, 1993, A modified Chebyshev pseudospectral method with an O(N−1) time step restriction, J. Comput. Phys., 104, 457, 10.1006/jcph.1993.1044 E. Lelarasmee, The Waveform Relaxation Method for the Time-Domain Analysis of Large-Scale Nonlinear systems, Ph.D. Thesis, Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA, 1982 Lelarasmee, 1982, The waveform relaxation method for time-domain analysis of large-scale integrated circuits, IEEE Trans. CAD Integrated Circuits Syst., 1, 131, 10.1109/TCAD.1982.1270004 Mead, 2002, Accuracy, resolution, and stability properties of a modified Chebyshev method, SIAM J. Sci. Comput., 24, 148, 10.1137/S1064827500381501 Renaut, 1997, Evaluation of Chebychev pseudospectral methods for third order differential equations, Numer. Algorithms, 16, 255, 10.1023/A:1019199416310 R.E. Spilling, Dynamic iteration and the pseudospectral method, Student Report, Department of Mathematical Sciences, The Norwegian Institute of Technology, Trondheim, Norway, 1993 Strauss, 1992 Zubik-Kowal, 2000, Chebyshev pseudospectral method and waveform relaxation for differential and differential-functional parabolic equations, Appl. Numer. Math., 34, 309, 10.1016/S0168-9274(99)00135-X B. Zubik-Kowal, Analysis of convergence of waveform relaxation using magnitudes of entries in delay and non-delay systems, in preparation