An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates

Alessandro Reali1,2, Héctor Gómez3
1Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
2IMATI-CNR, Via Ferrata 1, 27100, Pavia, Italy
3Departamento de Métodos Matemáticos, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cottrell, 2009

Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008

Auricchio, 2010, The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations, Comput. Methods Appl. Mech. Engrg., 199, 314, 10.1016/j.cma.2008.06.004

Borden, 2012, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77, 10.1016/j.cma.2012.01.008

Caseiro, 2014, On the assumed natural strain method to alleviate locking in solid-shell NURBS-based finite elements, Comput. Mech., 53, 1341, 10.1007/s00466-014-0978-4

Cottrell, 2007, Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160, 10.1016/j.cma.2007.04.007

Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027

Dhote, 2014, Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys, Comput. Mech., 53, 1235, 10.1007/s00466-013-0966-0

De Falco, 2011, GeoPDEs: a research tool for isogeometric analysis of PDEs, Adv. Eng. Softw., 42, 1020, 10.1016/j.advengsoft.2011.06.010

Elguedj, 2008, B̄ and F̄ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 197, 2732, 10.1016/j.cma.2008.01.012

Hughes, 2014, Finite element and NURBS approximations of eigen-value, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg., 272, 290, 10.1016/j.cma.2013.11.012

Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006

Morganti, 2014, Patient-specific isogeometric structural analysis of aortic valve closure, Comput. Methods Appl. Mech. Engrg.

Lipton, 2010, Robustness of isogeometric structural discretizations under severe mesh distortion, Comput. Methods Appl. Mech. Engrg., 199, 357, 10.1016/j.cma.2009.01.022

Reali, 2006, An isogeometric analysis approach for the study of structural vibrations, J. Earthq. Eng., 10, 1, 10.1080/13632460609350626

Echter, 2013, A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170, 10.1016/j.cma.2012.10.018

Echter, 2010, Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. Methods Appl. Mech. Engrg., 199, 374, 10.1016/j.cma.2009.02.035

Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013

Nguyen-Xuan, 2014, Isogeometric analysis of functionally graded plates using a refined plate theory, Composites B, 64, 222, 10.1016/j.compositesb.2014.04.001

Nguyen-Thanh, 2015, An extended isogeometric thin shell analysis based on Kirchhoff–Love theory, Comput. Methods Appl. Mech. Engrg., 284, 265, 10.1016/j.cma.2014.08.025

Akkerman, 2007, The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 371, 10.1007/s00466-007-0193-7

Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016

Bazilevs, 2008, NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. Mech., 43, 143, 10.1007/s00466-008-0277-z

Buffa, 2011, Isogeometric analysis: stable elements for the 2D Stokes equation, Internat. J. Numer. Methods Fluids, 65, 1407, 10.1002/fld.2337

Liu, 2014, Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations, J. Comput. Phys., 248, 47, 10.1016/j.jcp.2013.04.005

Gomez, 2010, Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations, Comput. Methods Appl. Mech. Engrg., 199, 1828, 10.1016/j.cma.2010.02.010

Gomez, 2011, Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230, 5310, 10.1016/j.jcp.2011.03.033

Auricchio, 2007, A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Methods Appl. Mech. Engrg., 197, 160, 10.1016/j.cma.2007.07.005

Gomez, 2008, Isogeometric analysis of the Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003

Gomez, 2012, An unconditionally energy-stable method for the phase-field crystal equation, Comput. Methods Appl. Mech. Engrg., 249–252, 52, 10.1016/j.cma.2012.03.002

Gomez, 2012, A new space–time discretization for the Swift–Hohenberg equation that strictly respects the Lyapunov functional, Commun. Nonlinear Sci. Numer. Simul., 17, 4930, 10.1016/j.cnsns.2012.05.018

Gomez, 2011, Numerical simulation of asymptotic states of the damped Kuramoto–Sivashinsky equation, Phys. Rev. E, 83, 046703, 10.1103/PhysRevE.83.046702

Kiendl, 2010, The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Engrg., 199, 2403, 10.1016/j.cma.2010.03.029

Auricchio, 2012, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249–252, 15, 10.1016/j.cma.2012.04.014

Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004

Schillinger, 2014, Reduced Bezier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1, 10.1016/j.cma.2014.04.008

Auricchio, 2010, Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878

Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249–252, 1043

Schillinger, 2013, Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017

Gomez, 2014, Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, J. Comput. Phys., 262, 153, 10.1016/j.jcp.2013.12.044

De Lorenzis, 2015, Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21, 10.1016/j.cma.2014.06.037

Beirao da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 249–252, 2

Auricchio, 2013, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113, 10.1016/j.cma.2013.03.009

Kiendl, 2015, Isogeometric collocation methods for the Reissner–Mindlin plate problem, Comput. Methods Appl. Mech. Engrg., 284, 489, 10.1016/j.cma.2014.09.011

Kiendl, 2014

Chu, 2014, Hermite radial basis collocation method for vibration of functionally graded plates with in-plane material inhomogeneity, Comput. Struct., 142, 79, 10.1016/j.compstruc.2014.07.005

Grigorenko, 1994, Numerical implementation of the spline-collocation method for bending of rectangular plates, J. Math. Sci., 69, 1443, 10.1007/BF01250589

Lin, 2005, Analysis of a laminated anisotropic plate by Chebyshev collocation method, Composites B, 36, 155, 10.1016/j.compositesb.2004.04.001

Xiang, 2012, Local thin plate spline collocation for free vibration analysis of laminated composite plates, Eur. J. Mech. A Solids, 33, 24, 10.1016/j.euromechsol.2011.11.004

Zhang, 2001, Least-squares collocation meshless method, Internat. J. Numer. Methods Engrg., 51, 1089, 10.1002/nme.200

Bert, 1996, Differential quadrature method in computational mechanics: a review, Appl. Mech. Rev., 49, 1, 10.1115/1.3101882

Bert, 1996, The differential quadrature method for irregular domains and application to plate vibration, Int. J. Mech. Sci., 38, 589, 10.1016/S0020-7403(96)80003-8

Bert, 1997, Differential quadrature: a powerful new technique for analysis of composite structures, Compos. Struct., 39, 179, 10.1016/S0263-8223(97)00112-8

Sherbourne, 1991, Differential quadrature method in the buckling analysis of beams and composite plates, Comput. Struct., 40, 903, 10.1016/0045-7949(91)90320-L

Vuong, 2010, ISOGAT: a 2D tutorial MATLAB code for isogeometric analysis, Comput. Aided Geom. Design, 27, 644, 10.1016/j.cagd.2010.06.006