An ionic liquid enhanced gel polymer electrolyte for high performance lithium-metal batteries based on sulfurized polyacrylonitrile cathode
Tài liệu tham khảo
Evers, 2013, New approaches for high energy density lithium–sulfur battery cathodes, Acc. Chem. Res., 46, 1135, 10.1021/ar3001348
Wang, 2014, In situ synthesis of bipyramidal sulfur with 3D carbon nanotube framework for lithium–sulfur batteries, Adv. Funct. Mater., 24, 2248, 10.1002/adfm.201302915
Qi, 2020, Titanium-containing metal−organic framework modified separator for advanced lithium–sulfur batteries, ACS Sustain. Chem. Eng., 8, 12968, 10.1021/acssuschemeng.0c03536
Li, 2015, A sulfur cathode with pomegranate-like cluster structure, Adv. Energy Mater., 5, 1500211, 10.1002/aenm.201500211
Tao, 2016, Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design, Nat. Commun., 7, 11203, 10.1038/ncomms11203
Deng, 2017, Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries, ACS Nano, 11, 6031, 10.1021/acsnano.7b01945
Zhang, 2018, Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium–sulfur batteries, ACS Nano, 12, 9578, 10.1021/acsnano.8b05466
Luo, 2017, Freestanding reduced graphene oxide–sulfur composite films for highly stable lithium–sulfur batteries, Nanoscale, 9, 4646, 10.1039/C7NR00999B
Wang, 2002, A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries, Adv. Mater., 14, 963, 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
Wang, 2019, Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium–sulfur batteries, Adv. Funct. Mater., 29, 1902929, 10.1002/adfm.201902929
Zhang, 2019, Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery, Energy Storage Mater., 21, 287, 10.1016/j.ensm.2018.12.010
Li, 2021, Controllable synthesis of sulfurized polyacrylonitrile nanofibers for high performance lithium–sulfur batteries, Compos. Commun., 24, 100675, 10.1016/j.coco.2021.100675
Haridas, 2020, A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage, Chem. Eng. J., 385, 123453, 10.1016/j.cej.2019.123453
Ma, 2021, Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for lithium sulfur batteries in carbonate electrolyte, Chem. Eng. J., 418, 129410, 10.1016/j.cej.2021.129410
Li, 2021, Two competing reactions of sulfurized polyacrylonitrile produce high-performance lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 13, 25002, 10.1021/acsami.1c06004
Liu, 2019, Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium-sulfur batteries, iScience, 19, 316, 10.1016/j.isci.2019.07.027
Wang, 2020, Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries, Chem. Eng. J., 393, 124705, 10.1016/j.cej.2020.124705
Ware, 2021, Fluoride in the SEI stabilizes the Li metal interface in Li–S batteries with solvate electrolytes, ACS Appl. Mater. Interfaces, 13, 18865, 10.1021/acsami.1c02629
Liu, 2022, Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes, Adv. Energy Mater., 2103589, 10.1002/aenm.202103589
Siyal, 2019, Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs), Appl. Surf. Sci., 494, 1119, 10.1016/j.apsusc.2019.07.179
Long, 2022, Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery, J. Energy Chem., 65, 9, 10.1016/j.jechem.2021.05.027
Zebardastan, 2016, Novel poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based gel polymer electrolyte containing fumed silica (SiO2) nanofiller for high performance dye-sensitized solar cell, Electrochim. Acta, 220, 573, 10.1016/j.electacta.2016.10.135
Zhao, 2021, Designing a new-type PMMA based gel polymer electrolyte incorporating ionic liquid for lithium oxygen batteries with Ru-based binder-free cathode, Appl. Surf. Sci., 565, 150612, 10.1016/j.apsusc.2021.150612
Liu, 2018, A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries, J. Membr. Sci., 545, 140, 10.1016/j.memsci.2017.09.077
Gao, 2020, A 3D polyacrylonitrile nanofiber and flexible polydimethylsiloxane macromolecule combined all-solid-state composite electrolyte for efficient lithium metal batteries, Nanoscale, 12, 14279, 10.1039/D0NR04244G
Huang, 2019, Cyclic stability improvement in a blended P(VdF-HFP)/P(BMA-AN-St)-based gel electrolyte by electrospinning for high voltage lithium ion batteries, Electrochim. Acta, 299, 45, 10.1016/j.electacta.2018.12.168
Wang, 2013, N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide-based organic electrolyte for high performance lithium–sulfur batteries, J. Power Sources, 236, 207, 10.1016/j.jpowsour.2013.02.068
Wang, 2016, To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes, Energy Environ. Sci., 9, 224, 10.1039/C5EE02837J
Xiong, 2019, Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries, Adv. Funct. Mater., 30, 2001444, 10.1002/adfm.202001444
Xu, 2020, Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode, Adv. Energy Mater., 10, 2002390, 10.1002/aenm.202002390
Tan, 2021, In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries, Energy Storage Mater., 39, 186, 10.1016/j.ensm.2021.04.020
Li, 2019, High electrochemical performance poly(ethylene oxide)/2,4-toluene diisocyante/polyethylene glycol as electrolytes for all-solid-state lithium batteries, J. Membr. Sci., 587, 117179, 10.1016/j.memsci.2019.117179