Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu về chất lượng bề mặt gia công và sự mài mòn dụng cụ trong quá trình mài phay cấp độ creep của hợp kim siêu bền dựa trên niken FGH96 với bánh mài nhôm oxit
Tóm tắt
Trong nghiên cứu này, chất lượng bề mặt gia công của hợp kim siêu bền dựa trên niken FGH96 (tương tự như Rene88DT) và đặc tính mài của bánh mài nhôm oxit nâu (BA) và nhôm oxit vi tinh thể (MA) đã được phân tích so sánh trong quá trình mài phay cấp độ creep. Các ảnh hưởng của các thông số mài (tốc độ bánh mài, tốc độ đưa phôi, và độ sâu cắt) tới lực mài, nhiệt độ mài, độ nhám bề mặt, hình thái bề mặt, sự mài mòn công cụ, và tỷ lệ mài đã được phân tích một cách toàn diện. Kết quả thí nghiệm cho thấy không có sự khác biệt đáng kể về chất lượng bề mặt gia công và đặc tính mài của FGH96 trong quá trình mài với hai loại bánh mài. Điều này chủ yếu là do lợi thế mài của bánh MA bị giảm bớt đối với vật liệu FGH96 khó gia công. Hơn nữa, cả hai loại bánh mài BA và MA đều cho thấy sự mài mòn công cụ nghiêm trọng dưới hình thức tắc nghẽn bánh mài và sự bám dính vật liệu phôi. Cuối cùng, một mô hình phân tích để dự đoán tỷ lệ mài đã được thiết lập bằng cách kết hợp thể tích mài mòn của công cụ, lực mài và chiều dài mài. Các sai số chấp nhận được giữa tỷ lệ mài dự đoán và thực nghiệm (dao động từ 0.6 đến 1.8) là 7.56% và 6.31% cho bánh BA và MA, tương ứng. Mô hình này có thể được sử dụng để đánh giá một cách định lượng hiệu suất mài của bánh mài nhôm oxit, do đó hữu ích cho việc tối ưu hóa các thông số mài trong quá trình mài phay cấp độ creep.
Từ khóa
Tài liệu tham khảo
Peng Z, Tian G, Jiang J et al (2016) Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy. Mater Sci Eng A 676:441–449
Devillez A, Le Coz G, Dominiak S et al (2011) Dry machining of Inconel 718 workpiece surface integrity. J Mater Process Technol 211:1590–1598
Daddona DM, Raykar SJ, Narke MM (2017) High speed machining of Inconel 718: tool wear and surface roughness analysis. Procedia CIRP 62:269–274
Du J, Liu ZQ (2013) Damage of the machined surface and subsurface in orthogonal milling of FGH95 superalloy. Int J Adv Manuf Technol 68:1573–1581
Du J, Liu ZQ, Yi W et al (2011) Influence of cutting speed on surface integrity for powder metallurgy nickel-based superalloy FGH95. Int J Adv Manuf Technol 56:553–559
Du J, Liu ZQ (2012) Effect of cutting speed on surface integrity and chip morphology in high-speed machining of PM nickel-based superalloy FGH95. Int J Adv Manuf Technol 60:893–899
Zhou JM, Bushlya V, Stahl JE (2012) An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools. J Mater Process Technol 212:372–384
Sugihara T, Takemura S, Enomoto T (2016) Study on high-speed machining of Inconel 718 focusing on tool surface topography of CBN cutting tool. Int J Adv Manuf Technol 87:9–17
Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54
Miao Q, Li HN, Ding WF (2020) On the temperature field in the creep feed grinding of turbine blade root: simulation and experiments. Int J Heat Mass Transf 147:118957
Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280
Linke BS (2015) Review on grinding tool wear with regard to sustainability. J Manuf Sci Eng Trans ASME 137:060801
Zhou YG, Gong Y, Zhu Z et al (2016) Modelling and optimization of surface roughness from micro-grinding of nickel-based single crystal superalloy using the response surface methodology and genetic algorithm. Int J Adv Manuf Technol 85:2607–2622
Żyłka Ł, Płodzień M, Babiarz R (2018) The influence of grinding speed on the creep-feed grinding process. J Mech Energy Eng 2:285–290
Zeng Q, Liu G, Liu L et al (2015) Investigation into grindability of a superalloy and effects of grinding parameters on its surface integrity. Proc Inst Mech Eng Part B J Eng Manuf 229:238–250
Miao Q, Ding WF, Gu YL et al (2019) Comparative investigation on wear behavior of brown alumina and microcrystalline alumina abrasive wheels during creep feed grinding of different nickel-based superalloys. Wear 426/427:1624–1634
Li M, Ding WF, Li BK et al (2019) Morphological evolution and grinding performance of vitrified bonded microcrystal alumina abrasive wheel dressed with a single-grit diamond. Ceram Int 45:19669–19678
Qian N, Ding WF, Zhu YJ (2018) Comparative investigation on grindability of K4125 and Inconel718 nickel-based superalloys. Int J Adv Manuf Technol 97:1649–1661
Yao CF, Jin QC, Huang XC et al (2013) Research on surface integrity of grinding Inconel718. Int J Adv Manuf Technol 65:1019–1030
Wang YG, Li CH, Zhang YB et al (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribol Int 99:198–210
Xu XP, Yu YQ, Xu HJ (2002) Effect of grinding temperatures on the surface integrity of a nickel-based superalloy. J Mater Process Technol 129:359–363
Sinha MK, Setti D, Ghosh S et al (2016) An investigation on surface burn during grinding of Inconel 718. J Manuf Processes 21:124–133
Naskar A, Singh BB, Choudhary A et al (2018) Effect of different grinding fluids applied in minimum quantity cooling-lubrication mode on surface integrity in cBN grinding of Inconel 718. J Manuf Processes 36:44–50
Ding WF, Xu JH, Chen ZZ et al (2010) Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels. Chin J Aeronaut 23:501–510
Nadolny K (2014) State of the art in production, properties and applications of the microcrystalline sintered corundum abrasive grains. Int J Adv Manuf Technol 74:1445–1457
Miao Q, Ding WF, Kuang WJ et al (2020) Comparison on grindability and surface integrity in creep feed grinding of GH4169, K403, DZ408 and DD6 nickel-based superalloys. J Manuf Processes 49:175–186
Yu TY, Asplund DT, Bastawros AF et al (2016) Performance and modeling of paired polishing process. Int J Mach Tools Manuf 109:49–57
Li HN, Yu TB, Wang ZX et al (2017) Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions. Int J Mech Sci 126:319–339
Li Z, Ding WF, Shen L et al (2016) Comparative investigation on high-speed grinding of TiCp/Ti-6Al-4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels. Chin J Aeronaut 29:1414–1424
Shi XL, Xiu SC, Su HL (2019) Residual stress model of pre-stressed dry grinding considering coupling of thermal, stress, and phase transformation. Adv Manuf 7:401–410
Dai SJ, Li XQ, Zhang HB (2019) Research on temperature field of non-uniform heat source model in surface grinding by cup wheel. Adv Manuf 7(3):326–342
Ding WF, Zhang L, Li Z et al (2017) Review on grinding-induced residual stresses in metallic materials. Int J Adv Manuf Technol 88:2939–2968
Maksoud TMA (2005) Heat transfer model for creep-feed grinding. J Mater Process Technol 168:448–463
Dai CW, Ding WF, Zhu YJ et al (2018) Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with a vitrified CBN wheel. Precis Eng 52:192–200
Gu YL, Li HN, Du BC et al (2019) Towards the understanding of creep-feed deep grinding of DD6 nickel-based single-crystal superalloy. Int J Adv Manuf Technol 100:445–455
Li Z, Ding WF, Liu CJ et al (2018) Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding. Int J Adv Manuf Technol 94:3917–3928
Rowe WB (2001) Thermal analysis of high efficiency deep grinding. Int J Mach Tools Manuf 41:1–19
Hecker RL, Liang SY (2013) Predictive modeling of surface roughness in grinding. Int J Mach Tools Manuf 43:755–761
Wu WT, Li CH, Yang M et al (2019) Specific energy and g ratio of grinding cemented carbide under different cooling and lubrication conditions. Int J Adv Manuf Technol 105(1/4):67–82
Gao T, Li CH, Zhang YB et al (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131:51–63
Zhou W, Peng K, Yu Y (2016) Surface roughness measurement and analysis of mechanical parts based on digital holography. Adv Manuf 4(3):217–224
Kovach JA, Malkin S (1988) Thermally induced grinding damage in superalloy materials. CIRP Ann 37:309–313
Fredj NB, Sidhom H, Braham C (2006) Ground surface improvement of the austenitic stainless steel AISI 304 using cryogenic cooling. Surf Coat Technol 200:4846–4860
Rowe WB (2009) Principles of modern grinding technology. Elsevier, Amsterdam, pp 82–87
Miao Q, Ding WF, Kuang WJ et al (2020) Tool wear of vitrified microcrystalline alumina wheels in creep feed profile grinding of turbine blade root of single crystal nickel-based superalloy. Tribol Int 145:106144
Dai CW, Ding WF, Xu JH et al (2017) Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain. Int J Mach Tools Manuf 113:49–58
Malkin S, Hwang TW (1996) Grinding mechanisms for ceramics. CIRP Ann Manuf Technol 45(1996):569–580
Doǧan CP, Hawk JA (2001) Microstructure and abrasive wear in silicon nitride ceramics. Wear 250:256–263
Miyazaki H, Hyuga H, Yoshizawa YI et al (2009) Correlation of wear behavior and indentation fracture resistance in silicon nitride ceramics hot-pressed with alumina and yttria. J Eur Ceram Soc 29:1535–1542
Godino L, Pombo I, Sanchez JA et al (2018) On the development and evolution of wear flats in microcrystalline sintered alumina grinding wheels. J Manuf Processes 32:494–505
Nadolny K (2015) Wear phenomena of grinding wheels with sol–gel alumina abrasive grains and glass-ceramic vitrified bond during internal cylindrical traverse grinding of 100Cr6 steel. Int J Adv Manuf Technol 77:83–98
Shen B, Malshe AP, Kalita P et al (2008) Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding. Trans NAMRI/SME 36(357):e364
Kalita P, Malshe AP, Kumar SA et al (2012) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Processes 14:160–166