Nghiên cứu về méo mó của chi tiết mỏng PLA trong quy trình FDM

Liu Xinhua1,2, Li Shengpeng1, Liu Zhou1, Zheng Xianhua1, Chen Xiaohu1, Wang Zhongbin1
1School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
2Xuyi Mine Equipment and Materials R&D Center, China University of Mining and Technology, Huai’an, China

Tóm tắt

Để làm sáng tỏ cơ chế biến dạng của chi tiết mỏng PLA trong quy trình FDM, một mô hình lý thuyết dựa trên lý thuyết tấm đàn hồi trong điều kiện nhiệt đàn hồi đã được thiết lập, và một phương pháp nghiên cứu thực nghiệm dựa trên phương pháp Taguchi được trình bày. Một mẫu thử đặc biệt đã được thiết kế, và quy trình thí nghiệm đã được làm rõ. Hơn nữa, 81 mẫu thử đã được chuẩn bị thông qua quy trình FDM và được đo bằng máy quét laser 3D cầm tay. Hai phương pháp phân tích thống kê, tỷ lệ tín hiệu trên nhiễu (S/N) và phân tích phương sai (ANOVA), đã được áp dụng để tối ưu hóa các tham số quy trình nhằm giảm thiểu sự biến dạng của chi tiết mỏng. Kết quả thí nghiệm cho thấy các tham số quy trình tối ưu có thể được xác định và mô hình lý thuyết được đề xuất đã chứng minh được hiệu quả.

Từ khóa

#PLA #quy trình FDM #biến dạng #tấm đàn hồi #phương pháp Taguchi #phân tích thống kê

Tài liệu tham khảo

Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications. World Scientific Yan X, Gu P (1996) A review of rapid prototyping technologies and systems. Comput-Aided Des 28(4):307–318 Petzold R, Zeilhofer HF, Kalender WA (1999) Rapid prototyping technology in medicine-basics and applications. Comput Med Imaging Graph 23(5):277–284 Boschetto A, Giordano V, Veniali F (2012) Modelling micro geometrical profiles in fused deposition process. Int J Adv Manuf Technol 61(9–12):945–956 Zein I, Hutmacher DW, Tan KC, Teoh SW (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering application. Biomaterials 23(4):1169–1185 Peng A, Xiao XM, Yue R (2014) Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73(1–4):87–100 Rutkowski JV, Levin BC (1986) Acrylonitrile-butadiene-styrene copolymers (ABS): Pyrolysis and combustion products and their toxicity-a review of the literature. Fire Mater 10(3–4):93–105 Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846 Madhavan NK, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501 Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246 Kantaros A, Karalekas D (2013) Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des 50:44–50 Wang TM, Xi JT, Jin Y (2007) A model research for part warp deformation in the FDM process. Int J Adv Manuf Technol 33(11–12):1087–1096 Vatani M, Barazandeh F, Rahimi AR, Nezhad AS (2012) Distortion modeling of SL parts by classical lamination theory. Rapid Prototyp J 18(3):188–193 Kim GD, Lee JK (2005) Prediction of curl distortion using classical lamination theory in stereolithography. J Korean Soc Precis Eng 22(11):210–217 Yan XR, Yan YN, Zhang RJ, Guo YH (2003) Study on the Interlaminar Stress and Warping Deformation in Laminated Object Manufacturing. Chin J Mech Eng 39(5):36–40 Xu HY, Zhang Y, LuB CDY (2004) Numerical simulation of solidified deformation of resin parts in stereolithography rapid protyping. Chin J Mech Eng 40(6):107–112 Jayanthi S, Keefe M, Gargiulo EP (1994) Studies in stereolithography: influence of process parameters on curl distortion in photopolymer models. In: Solid Freeform Fabrication Symposium 1994. University of Texas, Austin, 250-258 Wiedemann B, Dusel KH, Eschl J (1995) Investigation into the influence of material and process on part distortion. Rapid Prototyp J 1(3):17–22 Dalgarno KW, Childs THC, Rowntree I, Rothwell L (1996) Finite element analysis of curl development in the selective laser sintering process. In: Proceedings of the Solid Freeform Fabrication Symposium, 559-566 Sonmez FO, Hahn HT (1998) Thermomechanical analysis of the laminated object manufacturing (LOM) process. Rapid Prototyp J 4(1):26–36 Nickel AH, Barnett DM, Prinz FB (2001) Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A 317(1):59–64 Zhang Y, Chou K (2008) A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part B. J Eng Manuf 222(8):959–968 Yugang D, Suqin W, Hao C, Lu BH (2000) Study on the Effect of Photocuring Resin Shrinkage on Parts Curl Distortion in the Process of Laser Rapid Prototyping. Chem Eng (China) 6:013 Wanhua Z, Dichen L, Bingheng L (2001) Investigation of the Part Deformation in Stereolithography. J Xi An Jiao Tong Univ 35(7):705–708 Yang HJ, Hwang PJ, Lee SH (2002) A study on shrinkage compensation of the SLS process by using the Taguchi method. Int J Mach Tool Manuf 42(11):1203–1212 Mahesh M, Wong YS, Fuh JYH, Loh HT (2004) Benchmarking for comparative evaluation of RP systems and processes. Rapid Prototyp J 10(2):123–135 Buchbinder D, Meiners W, Pirch N, Wissenbach K (2014) Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J Laser Appl 26(1):012004 Youssef HM (2011) Theory of two-temperature thermoelasticity without energy dissipation. J Therm Stresses 34(2):138–146 Boley BA, Weiner JH (2012) Theory of thermal stresses. Courier Dover Publications Long S, Atluri SN (2002) A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate. Comput Model Eng Sci 3(1):53–64 Sood AK, Equbal A, Toppo V, Ohdarb RK, Mahapatra SS (2012) An investigation on sliding wear of FDM built parts. CIRP J Manuf Sci Technol 5(1):48–54 Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1–4):509–519 Roy RK (2010) A primer on the Taguchi method. Society of Manufacturing Engineers