An investigation of the possible methods and potential benefits of de novo cloning of Nannochloropsis oceanica genes

Marine Life Science and Technology - Tập 1 - Trang 22-27 - 2019
Guanpin Yang1,2,3, Zhongyi Zhang1, Hang Liu1, Li Guo1
1College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, China
2Institutes of Evolution and Marine Biodiversity, OUC, Qingdao, China
3Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, China

Tóm tắt

Species in the microalgal genus Nannochloropsis are increasingly used as models for theoretical and applied studies. Here we attempt to generate InDel variations in the genome of Nannochloropsis oceanica, and then decipher the genetic basis of its economic and biological traits with bulked mutant analysis modified from bulked segregant analysis. In addition, we describe our efforts to construct site-tagged and gene-traceable mutant libraries to clone its genes through reverse genetic approaches. Currently, more than a half of N. oceanica protein-encoding genes are annotated against databanks. However, no functional gene has been de novo cloned from N. oceanica and no new function has been assigned to any of its annotatable genes. Here, we discuss the possible methods and potential benefits of de novo cloning of N. oceanica genes.

Tài liệu tham khảo

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178 Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q (2012) Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels. Appl Energ 96:371–377 Andersen RA, Brett RW, Potter D, Sexton JP (1998) Phylogeny of the Eustigmatophyceae based upon 18 s rDNA, with emphasis on Nannochloropsis. Protist 149:61–74 Bailey JC, Freshwater DW (1997) Molecular systematics of the Gelidiales: inferences from separate and combined analyses of plastid rbcL and nuclear SSU gene sequences. Eur J Phycol 32:343–352 Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47 Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244 Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119–1125 Carpinelli EC, Telatin A, Vitulo N, Forcato C, D’Angelo M, Schiavon R, Vezzi A, Giacometti GM, Morosinotto T, Valle G (2014) Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant 7:323–335 Chankova SG, Dimova E, Dimitrova M, Bryant PE (2007) Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinharditii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. Radiat Environ Biophys 46:409–416 Daugbjerg N, Andersen RA (1997) A molecular phylogeny of the heterokont algae based on analyses of chloroplast-encoded rbcL sequence data. J Phycol 33:1031–1041 Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, de Winter A, Dixon J, Foquet M et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138 Fawley KP, Fawley MW (2007) Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist 158:325–336 Fawley MW, Jameson I, Fawley KP (2015) The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 54:545–552 Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS ONE 8:e68529 Fu Y, Springer NM, Gerhardt DJ, Ying K, Yeh CT, Wu W, Swanson-Wagner R, D’Ascenzo M, Millard T, Freeberg L, Aoyama N, Kitzman J, Burgess D, Richmond T, Albert TJ, Barbazuk WB, Jeddeloh JA, Schnable PS (2010) Repeat subtraction-mediated sequence capture from a complex genome. Plant J 62:898–909 Galloway RE (1990) Selective condition and isolation of mutants in salt-tolerant, lipid-producing microalgae. J Phycol 26:752–760 Gee CW, Niyogi KK (2017) The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. PNAS 114:4537–4542 Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6558 Guo L, Liang S, Zhang Z, Liu H, Wang S, Pan K, Xu J, Ren X, Pei S, Yang G (2019) Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun Biol 2:249 Hibberd DJ (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 82:93–119 Hu GR, Fan Y, Zhang L, Yuan C, Wang JF, Li WJ, Hu Q, Li FL (2013) Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions. PLoS ONE 8:e60700 Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450 Kandilian R, Lee E, Pilon L (2013) Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra. Bioresour Technol 137:63–73 Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108:21265–21269 Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389 Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC (2016) An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28:367–387 Li X, Patena W, Fauser F, Jinkerson RE, Saroussi S, Meyer MT, Ivanova N, Robertson JM, Yue R, Zhang R, Vilarrasa-Blasi J, Wittkopp TM, Ramundo S, Blum SR, Goh A, Laudon M, Srikumar T, Lefebvre PA, Grossman AR, Jonikas MC (2019) A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat Genet 51:627–635 Liang S, Zhang Z, Liu H, Guo L, Sun S, Yang G (2019) Identifying the growth associating genes of Nannochloropsis oceanica by bulked mutant analysis (BMA) and RNA sequencing (BMR-seq). J Appl Phycol. https://doi.org/10.1007/s10811-019-01867-w Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293 Lin GM, Wang YM, Guo L, Ding HY, Hu YM, Liang SJ, Zhang ZY, Yang GP (2017) Verification of mutagen function of Zeocin in Nannochloropsis oceanica through transcriptome analysis. J Ocean Univ 12:501–508 Lin GM, Zhang ZY, Guo L, Ding HY, Yang GP (2018) Structural variation analysis of mutated Nannochloropsis oceanica caused by Zeocin through genome re-sequencing. J Ocean Univ 17:1225–1230 Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-seq (BSR-seq). PLoS ONE 7:e36406 Lubian LM, Montero O, Moreno-Garrido I, Huertas E, Sobrino C, Gonzalez-del Valle M, Pares G (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 12:249–255 Manning WM, Starain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1–19 Meng X, You H, Zhang Y, Zhuang F, Song X, Gao S, Gao C, Li J (2017) Construction of a genome-wide mutant library in rice using crispr/cas9. Mol Plant 10:1238–1241 Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832 Murakami R, Hashimoto H (2009) Unusual nuclear division in Nannochloropsis oculata (Eustigmatophyceae, Heterokonta) which may ensure faithful transmission of secondary plastids. Protist 160:41–49 Nishikawa K, Tominaga N (2001) Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta). Biosci Biotechnol Biochem 65:2650–2656 Pan KH, Qin JJ, Li S, Dai WK, Zhu BH, Jin YC, Yu WG, Yang GP, Li DF (2011) Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophyceae) as revealed by its genome sequence. J Phycol 47:1425–1432 Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686 Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33 Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692 Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013a) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183 Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R (2013b) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283 Tjahjono AE, Kakizono T, Hayama Y, Nishio N, Nagai S (1994) Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers. J Ferment Bioeng 77:352–357 Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T, Takagi K, Machita K, Watanabe S, Nishimura M, Yamada N, Mori S, Sasaki H, Kanamori H, Katayose Y, Ishimoto M (2015) Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genomics 16:1014 van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442 Verruto J, Francis K, Wang Y, Low MC, Greiner J, Tacke S, Kuzminov F, Lambert W, McCarren J, Ajjawi I, Bauman N, Kalb R, Hannum G, Moellering ER (2018) Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies. Proc Natl Acad Sci USA 115:E7015–E7022 Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X et al (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064 Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 162:3–12 Wang D, Ning K, Li J, Hu J, Han D, Wang H, Zeng X, Jing X, Zhou Q, Su X, Chang X, Wang A, Wang W, Jia J, Wei L, Xin Y, Qiao Y, Huang R, Chen J, Han B et al (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 10:e1004094 Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016a) Genome editing of model oleaginous microalgae Nannochloropsis sp. by CRISPR/Cas9. Plant J 88:1071–1081 Wang S, Zhang L, Yang G, Han J, Thomsen L, Pan K (2016b) Breeding 3 elite strains of Nannochloropsis oceanica by nitrosoguanidine mutagenesis and robust screening. Algal Res 19:104–108 Wang C, Tang S, Zhan Q, Hou Q, Zhao Y, Zhao Q, Feng Q, Zhou C, Lyu D, Cui L, Li Y, Miao J, Zhu C, Lu Y, Wang Y, Wang Z, Zhu J, Shangguan Y, Gong J, Yang S et al (2019) Dissecting a heterotic gene through gradedPool-Seq mapping informs a rice-improvement strategy. Nat Commun 10:2982 Weeks DP (2011) Homologous recombination in Nannochloropsis: a powerful tool in an industrially relevant alga. Proc Natl Acad Sci USA 108:20859–20860 Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC (2014) High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26:1398–1409