An investigation of nonlinear flow behaviour along rough-walled fractures considering the effects of fractal dimensions and contact areas

Journal of Natural Gas Science and Engineering - Tập 104 - Trang 104675 - 2022
Guowei Ma1, Chunlei Ma1, Yun Chen1
1School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

Tài liệu tham khảo

Babadagli, 2003, Fractal characteristics of rocks fractured under tension, Theor. Appl. Fract. Mech., 39, 73, 10.1016/S0167-8442(02)00139-8 Bear, 1972 Berkowitz, 2002, Characterizing flow and transport in fractured geological media: A review, Adv. Water Resour., 25, 861, 10.1016/S0309-1708(02)00042-8 Bouquain, 2012, The impact of inertial effects on solute dispersion in a channel with periodically varying aperture, Phys. Fluids, 24, 10.1063/1.4747458 Briggs, 2014, Numerical modelling of flow and transport in rough fractures, J. Rock Mech. Geotech. Eng., 6, 535, 10.1016/j.jrmge.2014.10.004 Briggs, 2017, Numerical modeling of the effects of roughness on flow and eddy formation in fractures, J. Rock Mech. Geotech. Eng., 9, 105, 10.1016/j.jrmge.2016.08.004 Brown, 1995, Simple mathematical model of a rough fracture, J. Geophys. Res. Solid Earth, 100, 5941, 10.1029/94JB03262 Chaudhary, 2011, The role of eddies inside pores in the transition from Darcy to forchheimer flows, Geophys. Res. Lett., 38, 10.1029/2011GL050214 Chen, 2021, Modeling of flow characteristics in 3D rough rock fracture with geometry changes under confining stresses, Comput. Geotech., 130, 10.1016/j.compgeo.2020.103910 Dijk, 1999, Three-dimensional flow measurements in rock fractures, Water Resour. Res., 35, 3955, 10.1029/1999WR900200 Dijk, 1999, Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI), Water Resour. Res., 35, 347, 10.1029/1998WR900044 Dippenaar, 2016, On the cubic law and variably saturated flow through discrete open rough-walled discontinuities, Int. J. Rock Mech. Min. Sci., 89, 200, 10.1016/j.ijrmms.2016.09.011 Dou, 2014, Lattice Boltzmann simulation of solute transport in a single rough fracture, Water Sci. Eng., 7, 277 Fan, 2020, Spatial gradient distributions of thermal shock-induced damage to granite, J. Rock Mech. Geotech. Eng., 12, 917, 10.1016/j.jrmge.2020.05.004 Ge, 1997, A governing equation for fluid flow in rough fractures, Water Resour. Res., 33, 53, 10.1029/96WR02588 Guo, 2020, Influence of fracture surface roughness on local flow pattern: visualization using a microfluidic field experiment, Hydrogeol. J., 28, 2373, 10.1007/s10040-020-02210-1 Guo, 2020, Experimental investigation on macroscopic behavior and microfluidic field of nonlinear flow in rough-walled artificial fracture models, Adv. Water Resour., 142, 10.1016/j.advwatres.2020.103637 Hou, 2021, Quantitative visualization and characteristics of gas flow in 3D pore-fracture system of tight rock based on lattice Boltzmann simulation, J. Nat. Gas Sci. Eng., 89, 10.1016/j.jngse.2021.103867 Hou, 1994, A lattice Boltzmann subgrid model for high Reynolds number flows, Fields Inst. Commun., 6, 151 Javadi, 2014, Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes, Water Resour. Res., 50, 1789, 10.1002/2013WR014610 Ju, 2017, Fractal model and lattice Boltzmann method for characterization of non-Darcy flow in rough fractures, Sci. Rep., 7, 1, 10.1038/srep41380 Konzuk, 2004, Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture, Water Resour. Res., 40, 10.1029/2003WR002356 Krüger, 2017, The lattice Boltzmann method, Springer Int. Publ., 10, 4 Lee, 2021, Effect of roughness on fluid flow and solute transport in a single fracture: A review of recent developments, current trends, and future research, J. Nat. Gas Sci. Eng., 91, 10.1016/j.jngse.2021.103971 Lee, 2015, Tail shortening with developing eddies in a rough-walled rock fracture, Geophys. Res. Lett., 42, 6340, 10.1002/2015GL065116 Liu, 2016, Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections, Adv. Water Resour., 88, 53, 10.1016/j.advwatres.2015.12.002 Ma, 2020, A semi-continuum model for numerical simulations of mass transport in 3-d fractured rock masses, Rock Mech. Rock Eng., 53, 985, 10.1007/s00603-019-01950-1 Ma, 2019, A mesh mapping method for simulating stress-dependent permeability of three-dimensional discrete fracture networks in rocks, Comput. Geotech., 108, 95, 10.1016/j.compgeo.2018.12.016 Ma, 2021, Numerical study on suppressing violent transient sloshing with single and double vertical baffles, Ocean Eng., 223 Majda, 2002, Vorticity and incompressible flow. Cambridge texts in applied mathematics, Appl. Mech. Rev., 55, B77, 10.1115/1.1483363 Movassagh, 2021, A fractal approach for surface roughness analysis of laboratory hydraulic fracture, J. Nat. Gas Sci. Eng., 85, 10.1016/j.jngse.2020.103703 Ogilvie, 2006, Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures, Earth Planet. Sci. Lett., 241, 454, 10.1016/j.epsl.2005.11.041 Oron, 1998, Flow in rock fractures: The local cubic law assumption reexamined, Water Resour. Res., 34, 2811, 10.1029/98WR02285 Plouraboue, 2000, Experimental study of the transport properties of rough self-affine fractures, J. Contam. Hydrol., 46, 295, 10.1016/S0169-7722(00)00134-0 Qian, 2011, Experimental study of the effect of roughness and Reynolds number on fluid flow in rough-walled single fractures: a check of local cubic law, Hydrol. Process., 25, 614, 10.1002/hyp.7849 Qian, 2012, Eddy correlations for water flow in a single fracture with abruptly changing aperture, Hydrol. Process., 26, 3369, 10.1002/hyp.8332 Raimbay, 2016, Quantitative and visual analysis of proppant transport in rough fractures, J. Nat. Gas Sci. Eng., 33, 1291, 10.1016/j.jngse.2016.06.040 Rong, 2020, Quantitative evaluation of fracture geometry influence on nonlinear flow in a single rock fracture, J. Hydrol., 589, 10.1016/j.jhydrol.2020.125162 Schwarz, 2013, Simulation of fluid flow on fractures and implications for reactive transport simulations, Transp. Porous Media, 96, 501, 10.1007/s11242-012-0103-0 Skjetne, 1999, High-velocity flow in a rough fracture, J. Fluid Mech., 383, 1, 10.1017/S0022112098002444 Suri, 2020, Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures, J. Nat. Gas Sci. Eng., 80, 10.1016/j.jngse.2020.103401 Tatone, 2013, An investigation of discontinuity roughness scale dependency using high-resolution surface measurements, Rock Mech. Rock Eng., 46, 657, 10.1007/s00603-012-0294-2 Tsang, 2005, Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal, Int. J. Rock Mech. Min. Sci., 42, 109, 10.1016/j.ijrmms.2004.08.003 Wang, 2016, Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations, Adv. Water Resour., 96, 373, 10.1016/j.advwatres.2016.08.006 Xiong, 2018, Nonlinear flow behavior through rough-walled rock fractures: the effect of contact area, Comput. Geotech., 102, 179, 10.1016/j.compgeo.2018.06.006 Zhang, 2020, Effect of surface morphology on fluid flow in rough fractures: a review, J. Nat. Gas Sci. Eng., 79, 10.1016/j.jngse.2020.103343 Zhang, 2020, A comparative study of fracture surface roughness and flow characteristics between CO2 and water fracturing, J. Nat. Gas Sci. Eng., 76, 10.1016/j.jngse.2020.103188 Zhao, 2018, Lattice Boltzmann simulation of gas flow and permeability prediction in coal fracture networks, J. Nat. Gas Sci. Eng., 53, 153, 10.1016/j.jngse.2018.03.001 Zhou, 2016, Experimental study of permeability characteristics for the cemented natural fractures of the shale gas formation, J. Nat. Gas Sci. Eng., 29, 345, 10.1016/j.jngse.2016.01.005 Zimmerman, 2004, Non-linear regimes of fluid flow in rock fractures, Int. J. Rock Mech. Min. Sci., 41, 163, 10.1016/j.ijrmms.2004.03.036 Zimmerman, 1992, The effect of contact area on the permeability of fractures, J. Hydrol., 139, 79, 10.1016/0022-1694(92)90196-3 Zou, 2015, Roughness decomposition and nonlinear fluid flow in a single rock fracture, Int. J. Rock Mech. Min. Sci., 75, 102, 10.1016/j.ijrmms.2015.01.016 Zou, 2017, Shear-enhanced nonlinear flow in rough-walled rock fractures, Int. J. Rock Mech. Min. Sci., 97, 33, 10.1016/j.ijrmms.2017.06.001