An inverse problem of fourth-order partial differential equation with nonlocal integral condition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbasova, K.E., Mehraliyev, Y.T., Azizbayov, E.I.: Inverse boundary-value problem for linearized equation of motion of a homogeneous elastic beam. Int. J. Appl. Comput. Math. 33, 157–170 (2020)
Caglar, H.N., Caglar, S.H., Twizell, E.H.: The numerical solution of fifth-order boundary value problems with sixth-degree B-spline functions. Appl. Math. Lett. 12, 25–30 (1999)
De Boor, C.: On the convergence of odd-degree spline interpolation. J. Approx. Theory 1(4), 452–463 (1968)
Dhiman, N., Tamsir, M.: Re-modified quintic B-spline collocation method for the solution of Kuramoto–Sivashinsky type equations. Multidiscip. Model. Mater. Struct. (2018). https://doi.org/10.1108/MMMS-06-2018-0111
DuChateau, P., Zachmann, D.: Applied Partial Differential Equations. Harper & Row, New York (1989)
Gebremedhin, G.S., Jena, S.R.: Approximate solution of ordinary differential equation via hybrid block approach. Int. J. Emerg. Technol. 10, 201–211 (2019)
Gebremedhin, G.S., Jena, S.R.: Approximate solution of a fourth order ordinary differential equation via tenth step block method. Int. J. Comput. Sci. Math. 11, 253–262 (2020)
Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven (2003)
Huntul, M., Tamsir, M.: Identifying an unknown potential term in the fourth-order Boussinesq–Love equation from mass measurement. Eng. Comput. (2021). https://doi.org/10.1108/EC-12-2020-0757
Huntul, M.J., Tamisr, M., Ahmadini, A.: An inverse problem of determining the time-dependent potential in the higher-order Boussinesq–Love equation from boundary data. Eng. Comput. (2021). https://doi.org/10.1108/EC-08-2020-0459
Huntul, M.J., Tamsir, M., Dhiman, N.: An inverse problem of identifying the time-dependent potential in a fourth-order pseudo-parabolic equation from additional condition. Numer. Methods Partial Differ. Equ. (2021). https://doi.org/10.1002/num.22778
Ivanov, V.K.: On linear problems which are not well-posed. Dokl. Akad. Nauk SSSR 145, 270–272 (1962)
Jena, S.R., Gebremedhin, G.S.: Approximate solution of a fifth order ordinary differential equation with block method. Int. J. Comput. Sci. Math. 12, 413–426 (2020)
Jena, S.R., Gebremedhin, G.S.: Numerical treatment of Kuramoto–Sivashinsky equation on B-spline collocation. Arab J. Basic Appl. Sci. 28, 283–291 (2021)
Jena, S.R., Gebremedhin, G.S.: Decatic B-spline collocation scheme for approximate solution of Burgers’ equation. Numer. Methods Partial Differ. Equ. (2021). https://doi.org/10.1002/num.22747
Jena, S.R., Gebremedhin, G.S.: Computational technique for heat and advection–diffusion equations. Soft Comput. 25, 1139–1150 (2021)
Jena, S.R., Mohanty, M.: Numerical treatment of ODE (fifth order). Int. J. Emerg. Technol. 10, 191–196 (2019)
Jena, S.R., Mohanty, M., Mishra, S.K.: Ninth step block method for numerical solution of a fourth order ordinary differential equation. Adv. Model. Anal. A 55, 47–56 (2018)
Jena, S.R., Nayak, D., Acharya, M.M.: Application of mixed quadrature rule on electromagnetic field problems. Comput. Math. Model. 28, 267–277 (2017)
Jena, S.R., Senapati, A., Gebremedhin, G.S.: Numerical study of solitions in BFRK scheme. Int. J. Mech. Control 21, 163–175 (2020)
Jena, S.R., Senapati, A., Gebremedhin, G.S.: Approximate solution of MRLW equation in B-spline environment. Math. Sci. 14, 345–357 (2020)
Lavrentiev, M.M., Romanov, V.G., Vasiliev, V.G.: Multidimensional Inverse Problems for Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (1970)
Mathworks: Documentation optimization toolbox-least squares algorithms, 2019. Available at www.mathworks.com
Megraliev, Y.T., Alizade, F.K.: Inverse boundary value problem for a Boussinesq type equation of fourth order with nonlocal time integral conditions of the second kind. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauk. 26, 503–514 (2016)
Mittal, R.C., Arora, G.: Quintic B-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation. Commun. Nonlinear Sci. Numer. Simul. 15, 2798–2808 (2010)
Mittal, R.C., Jain, R.K.: B-splines methods with redefined basis functions for solving fourth order parabolic partial differential equations. Appl. Math. Comput. 217, 9741–9755 (2011)
Mohanty, M., Jena, S.R.: Differential transformation method for approximate solution of ordinary differential equation. Adv. Model. Anal. B 61, 135–138 (2018)
Mohanty, M., Jena, S.R., Mishra, S.K.: Mathematical modelling in engineering with integral transforms via modified Adomian decomposition method. Math. Model. Eng. Probl. 8, 409–417 (2021)
Mohanty, M., Jena, S.R., Mishra, S.K.: Approximate solution of fourth order differential equation. Adv. Math. 10, 621–628 (2021)
O’Brien, G.G., Hyman, M.A., Kaplan, S.: A study of the numerical solution of partial differential equations. J. Math. Phys. 29, 223–251 (1950)
Rodriguez, P.: Total variation regularization algorithms for images corrupted with different noise models: a review. J. Electr. Comput. Eng. 2013, Article ID 217021, 18 pages (2013)
Senapati, A., Jena, S.R.: A computational scheme for fifth order boundary value problems. Int. J. Inf. Technol. 14, 1397–1404 (2022). https://doi.org/10.1007/s41870-022-00871-7
Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943)
Vichnevetsky, R.: Stability charts in the numerical approximation of partial differential equations: a review. Math. Comput. Simul. 21, 170–177 (1979)
Wang, Y., Yang, C., Yagola, A.: Optimization and Regularization for Computational Inverse Problems and Applications. Springer, Berlin (2011)
Yang, H.: An inverse problem for the sixth-order linear Boussinesq-type equation. UPB Sci. Bull., Ser. A 82, 27–36 (2020)