An inverse problem for computing a leading coefficient in the Sturm–Liouville operator by using the boundary data
Tài liệu tham khảo
Hasanov, 1997, Solution of an inverse coefficient problem for an ordinary differential equation, Appl. Anal., 67, 11, 10.1080/00036819708840594
Kaltenbacher, 2000, A projection-regularized Newton method for nonlinear ill-posed problems and its application to parameter identification problems with finite element discretization, SIAM J. Numer. Anal., 37, 1885, 10.1137/S0036142998347322
Hasanov, 2002, Simulation of ill-conditioned situations in inverse coefficient problem for the Sturm–Liouville operator based on boundary measurements, Math. Comput. Simul., 61, 47, 10.1016/S0378-4754(02)00134-9
Seyidmamedov, 2002, Determination of leading coefficients in Sturm–Liouville operator from boundary measurements. I. A stripping algorithm, Appl. Math. Comput., 125, 1, 10.1016/S0096-3003(00)00104-1
Hasanov, 2002, Determination of leading coefficients in Sturm–Liouville operator from boundary measurements. II. Unicity and an engineering approach, Appl. Math. Comput., 125, 23, 10.1016/S0096-3003(00)00105-3
Liu, 2008, Solving an inverse Sturm–Liouville problem by a Lie-group method, Boundary Value Probl., 10.1155/2008/749865
Liu, 2008, A novel fictitious time integration method for solving the discretized inverse Sturm–Liouville for specified eigenvalues problems, CMES: Comput. Model. Eng. Sci., 36, 261
Hasanov, 2003, An inverse polynomial method for the identification of the leading coefficient in the Sturm–Liouville operator from boundary measurements, Appl. Math. Comput., 140, 501, 10.1016/S0096-3003(02)00248-5
Yeung, 1996, Second-order finite difference approximation for inverse determination of thermal conductivity, Int. J. Heat Mass Transf., 39, 3685, 10.1016/0017-9310(96)00028-2
Keung, 1998, Numerical identifications of parameters in parabolic systems, Inv. Prob., 14, 83, 10.1088/0266-5611/14/1/009
Lin, 2001, Inverse method for estimating thermal conductivity in one-dimensional heat conduction problems, J. Thermophys. Heat Transf., 15, 34, 10.2514/2.6593
Chang, 2006, Non-iteration estimation of thermal conductivity using finite volume method, Int. Commun. Heat Mass Transf., 33, 1013, 10.1016/j.icheatmasstransfer.2006.02.010
Jia, 2004, Identifications of parameters in ill-posed linear parabolic equations, Nonlinear Anal., 57, 677, 10.1016/j.na.2004.03.011
Liu, 2007, Highly accurate computation of spatial-dependent heat conductivity and heat capacity in inverse thermal problem, CMES: Comput. Model. Eng. Sci., 17, 1
Liu, 2008, An LGSM to identify nonhomogeneous heat conductivity functions by an extra measurement of temperature, Int. J. Heat Mass Transf., 51, 2603, 10.1016/j.ijheatmasstransfer.2008.01.010
Lam, 1995, Inverse determination of thermal conductivity for one-dimensional problems, J. Thermophys. Heat Transf., 9, 335, 10.2514/3.665
Chen, 2006, Solving an inverse parabolic problem by optimization from final measurement data, J. Comput. Appl. Math., 193, 183, 10.1016/j.cam.2005.06.003
Tadi, 1997, Inverse heat conduction based on boundary measurement, Inv. Prob., 13, 1585, 10.1088/0266-5611/13/6/012
Engl, 2000, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inv. Prob., 16, 1907, 10.1088/0266-5611/16/6/319
Ito, 1990, The augmented Lagrangian method for parameter estimation in elliptic systems, SIAM J. Contr. Optim., 28, 113, 10.1137/0328006
Ito, 1996, Augmented Lagrangian-SQR-methods in Hilbert spaces and applications to control in the coefficients problems, SIAM J. Optim., 6, 96, 10.1137/0806007
Ben-yu, 2001, An augmented Lagrangian method for parameter identifications in parabolic systems, J. Math. Anal. Appl., 263, 49, 10.1006/jmaa.2001.7593
Chen, 1999, An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems, SIAM J. Contr. Optim., 37, 892, 10.1137/S0363012997318602
Liu, 2006, The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions, CMES: Comput. Model. Eng. Sci., 13, 149
Liu, 2006, Efficient shooting methods for the second order ordinary differential equations, CMES: Comput. Model. Eng. Sci., 15, 69
Liu, 2006, The Lie-group shooting method for singularly perturbed two-point boundary value problems, CMES: Comput. Model. Eng. Sci., 15, 179
Liu, 2001, Cone of non-linear dynamical system and group preserving schemes, Int. J. Non-Linear Mech., 36, 1047, 10.1016/S0020-7462(00)00069-X
Liu, 2006, One-step GPS for the estimation of temperature-dependent thermal conductivity, Int. J. Heat Mass Transf., 49, 3084, 10.1016/j.ijheatmasstransfer.2005.11.036
Liu, 2006, An efficient simultaneous estimation of temperature-dependent thermophysical properties, CMES: Comput. Model. Eng. Sci., 14, 77
Liu, 2007, Identification of temperature-dependent thermophysical properties in a partial differential equation subject to extra final measurement data, Numer. Methods Partial Diff. Eq., 23, 1083, 10.1002/num.20211
Liu, 2010, An iterative and adaptive Lie-group method for solving the Calderón inverse problem, CMES: Comput. Model. Eng. Sci., 64, 299
Liu, 2010, A Lie-group adaptive method for imaging a space-dependent rigidity coefficient in an inverse scattering problem of wave propagation, CMC: Comput. Mater. Cont., 18, 1
Liu, 2011, A self-adaptive LGSM to recover initial condition or heat source of one-dimensional heat conduction equation by using only minimal boundary thermal data, Int. J. Heat Mass Transf., 54, 1305, 10.1016/j.ijheatmasstransfer.2010.12.013
Liu, 2011, Using a Lie-group adaptive method for the identification of a nonhomogeneous conductivity function and unknown boundary data, CMC: Comput. Mater. Cont., 21, 17
Liu, 2011, A Lie-group adaptive method to identify spatial-dependence heat conductivity coefficients, Numer. Heat Transf. Part B, 60, 305, 10.1080/10407790.2011.609103
Keung, 2000, An efficient linear solver for nonlinear parameter identification problems, SIAM J. Sci. Comput., 22, 1511, 10.1137/S1064827598346740
Cao, 2010, Regularization of naturally linearized parameter identification problems and the application of the balancing principle, 65
Liu, 2009, A highly accurate technique for interpolations using very high-order polynomials, and its applications to some ill-posed linear problems, CMES: Comput. Model. Eng. Sci., 43, 253