Mô hình quản lý tồn kho cho các mặt hàng có hậu tồn một phần với hiệu ứng ghi nhớ

Soft Computing - Tập 27 - Trang 9533-9550 - 2023
Rituparna Pakhira1, Uttam Ghosh2, Harish Garg3,4,5,6, Vishnu Narayan Mishra7
1Academy of Technology, Adisaptagram, Hooghly, India
2Department of Applied Mathematics, University of Calcutta, Kolkata, India
3School of Mathematics, Thapar Institute of Engineering and Technology (Deemed University), Patiala, India
4Department of Mathematics, Graphic Era (deemed to be) University, Dehradun, India
5Applied Science Research Center, Applied Science Private University, Amman, Jordan
6College of Technical Engineering, The Islamic University, Najaf, Iraq
7Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, India

Tóm tắt

Quản lý tồn kho được coi là một trong những chủ đề đã được tài liệu hóa rộng rãi trong thực tế. Vi phân phân số và tích phân là phần của phép tính phân số. Phép tính phân số là phần tổng quát của phép tính thông thường. Ghi nhớ của các hiện tượng vật lý là một chủ đề rất đáng quan tâm nhưng thường bị bỏ qua khi được mô tả dưới dạng phương trình vi phân bậc nguyên. Để thảo luận về ghi nhớ của mô hình tồn kho, các công cụ vi phân phân số được xem xét. Một vi phân phân số tại bất kỳ điểm nào cung cấp sản lượng biên trước đó và sản lượng tại điểm hiện tại cho bất kỳ đầu vào điểm hiện tại nào. Trong mô hình này, sự thiếu hụt được xem xét, và trong thời gian thiếu hụt, nhu cầu được ghi nhận một phần. Tùy thuộc vào tỷ lệ ghi nhận một phần thấp và tỷ lệ ghi nhận một phần cao, kết quả của hiệu ứng ghi nhớ thay đổi trên tổng chi phí trung bình và khoảng thời gian đặt hàng tối ưu. Hơn nữa, để cho thấy mối quan hệ giữa các mô hình phân số và mô hình cổ điển thông thường, hai loại chỉ số ghi nhớ đã được xem xét: (i) chỉ số ghi nhớ vi phân và (ii) chỉ số ghi nhớ tích phân. Đối với một hiệu ứng ghi nhớ nhất định, tổng chi phí trung bình tối thiểu là giống nhau cho tỷ lệ ghi nhận một phần thấp và tỷ lệ ghi nhận một phần cao.

Từ khóa

#quản lý tồn kho #vi phân phân số #ghi nhớ #phương trình vi phân #hiệu ứng ghi nhớ

Tài liệu tham khảo

Aslani A, Taleizadeh AA, Zanoni S (2017) An EOQ model with partial backordering with regard to random yield: two strategies to improve mean and variance of the yield. Comp Ind Eng 112:379–390 Baleanu D, Guvenc ZB, Machado JT (2010) New trends in nanotechnology and fractional calculus applications, vol 10. Springer, New York, pp 978–90 Baleanu D, Jajarmi A, Hajipour M (2018) On the non-linear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel. Nonlinear Dyn 94(1):397–414 Baleanu D, Jajarmi A, Bonyah E (2018) New aspects of poor nutrition in the life cycle within the fractional calculus. Adv Differ Equ 1:1–14 Bayin S (2011) Fractional calculus and its applications to science and engineering, slides of the seminars. IAM-METU. FezaGu rsey Institute 1 Bhrawy AH, Tharwat MM, Yildirim A (2013) A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations. Appl Math Model 37:4245–4252 Canyakmaz C, Ozekici S, Karaesmen F (2019) An inventory model where customer demand is dependent on a stochastic price process. Int J Prod Econ 212:139–152 Caputo M (1967) Linear models of dissipation whose frequency independent. Geophys J R Astr Soc 13(5):529–539 Choudhury M, Mahato C, Mahata GC (2022) An integrated inventory model with capacity constraint under order-size dependent trade credit, all-unit discount and partial backordering. RAIRO Oper Res 56(3):1593–1622 Das AK (2014) Role of fractional calculus to the generalized inventory model. J Global Res Comput Sci 3(2):11–23 Das AK, Roy TK (2015) Fractional order EOQ model with linear trend of time-dependent demand. Int J Intell Syst Appl 03:44–53 Das AK, Roy TK (2017) Fractional order generalized EPQ model. Int J Comput Appl Math 12(2):525–536 Datta TK, Pal AK (1992) A note on a replenishment policy for an inventory model with linear trend in demand and shortages. J Oper Res Soc 43(10):993–1001 Dave U (1989) A deterministic lot-size inventory model with shortages and a linear trend in demand. Nav Res Logist 36(4):507–514 De SK, Mahata GC (2020) A production inventory supply chain model with partial backordering and disruption under triangular linguistic dense fuzzy lock set approach. Soft Comput 24(7):5053–5069 Diabat A, Taleizadeh AA, Lashgari M (2017) A lot sizing model with partial downstream delayed payment, partial upstream advance payment, and partial backordering for deteriorating items. J f Manuf Syst 45:322–342 Donaldson WA (1977) Inventory replenishment policy for a linear trend in demand an analytical solution. J Oper Res Soc 28(3):663–670 Du M, Wang Z, Hu H (2013) Measuring memory with the order of fractional derivative. Sci Rep 3(1):1–3 Ghosh U, Sengupta S, Sarkar S, Das S (2015) Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function. J Math Anal 3(2):32–38 Ghosh U, Das T, Sarkar S (2021) Point canonical transformation and the time independent fractional Schrodinger equation with position dependent mass. Appl Maths E-Notes 21:687–704 Goswami A, Chaudhuri KS (1991) An EOQ model for deteriorating items with shortages and a linear trend in demand. J Oper Res Soc 42(12):1105–1110 Harris F (1915) Operations and cost, AW Shaw Co. Factory Management Series. Chicago Iyiola OS, Asante-Asamani EO, Wade BA (2018) A real distinct poles rational approximation of generalized Mittag-Leffler functions and their inverses: applications to fractional calculus. J Comput Appl Math 330(1):307–317 Jajarmi A, Baleanu D (2018) Suboptimal control of fractional-order dynamic systems with delay argument. J Vib Control 24(12):2430–2446 Jiang WH, Xu L, Chen ZS, Pedrycz W, Chin KS (2022) Partial backordering inventory model with limited storage capacity under order-size dependent trade credit. Technol Econ 28(1):131–162 Khan MAA, Shaikh AA, Cardenas-Barron LE (2021) An inventory model under linked-to-order hybrid partial advance payment, partial credit policy, all-units discount and partial backlogging with capacity constraint. Omega 103:102418 Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations 204, Elsevier Lashgari M, Taleizadeh AA, Sadjadi SJ (2018) Ordering policies for non-instantaneous deteriorating items under hybrid partial prepayment, partial trade credit and partial backordering. J Oper Res Soc 69(8):1167–1196 Machado JT, Mata ME (2015) Pseudo phase plane and fractional calculus modeling of western global economic downturn. Commun Nonlinear Sci Numer Simul 22:396–406 Magin RL (2006) Fractional calculus in bioengineering. Begell House Publisher Inc, Connecticut Meng R, Yin D, Drapaca CS (2019) Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput Mech 64:163–171 Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley Pakhira R, Sarkar S, Ghosh U (2020) Study of memory effect in an inventory model for deteriorating items with partial backlogging. Comput Ind Eng 148:106705 Pakhira R, Ghosh U, Sarkar S, Mishra VN (2021) Study of memory effect in an Economic order quantity model for completely during backlogged demand during shortage. Progr Fract Differ Appl 7(3):1–14 Pakhira R, Ghosh U, Sarkar S, Mishra VN (2021) Study of memory effect in an inventory model with constant deterioration rate. J Appl Nonlinear Dyn 10(02):229–243 Pakhira R, Ghosh U, Sarkar S, Mishra LN (2022) Study of memory effect in an EOQ model with fractional polynomial demand rate under fuzzy environment. Disc Non Compl 11(04):583–98 Podlubny I (1999) Fractional Differential Equations. Math Sci Eng Academic Press, San Diego Rahaman M, Mondal SP, Shaikh AA, Pramanik P, Roy S, Maiti MK, Mondal R, De D (2020) Artificial bee colony optimization-inspired synergetic study of fractional-order economic production quantity model. Soft Comp 24(20):15341–15359 Rahaman M, Mondal SP, Shaikh AA, Ahmadian A, Senu N, Salahshour S (2020) Arbitrary-order economic production quantity model with and without deterioration: generalized point of view. Adv Differ Equ 2020:16. https://doi.org/10.1186/s13662-019-2465-x Saeedian M, Khalighi M, Azimi-Tafreshi N, Ausloos Jafari GR (2017) Memory effects on epidemic evolution: the susceptible-infected-recovered epidemic model. Phys Rev E 95(2):022409 Salehi H, Taleizadeh AA, Tavakkoli-Moghaddam R (2016) An EOQ model with random disruption and partial backordering. Int J Prod Res 54(9):2600–2609 San-Jose LA, Sicilia J, Pando V, Alcaide-Lopez-de-Pablo D (2022) An inventory system with time-dependent demand and partial backordering under return on inventory investment maximization. Comput Oper Res 145:105861 Singh J (2019) A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law. Chaos 29:013–137 Singh J, Kumar D, Baleanu D, Rathore S (2018) An efficient numerical algorithm for the fractional Drinfeld Sokolov Wilson equation. Appl Math Comput 335:12–24 Singh J, Kumar D, Hammouch Z, Atangana A (2018) A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl Math Comput 316:504–515 Singh J, Kumar D, Baleanu D (2019) New aspects of fractional Biswas Milovic model with Mittag-Leffler law. Math Model Nat Phenom 14(3):303 Singh J, Kumar J, Baleanu D (2018) On the analysis of fractional diabetes model with exponential law. Adv Differ Equ. https://doi.org/10.1186/s13662-018-1680-1 Taleizadeh AA, Aliabadi L, Thaichon P (2022) A sustainable inventory system with price-sensitive demand and carbon emissions under partial trade credit and partial backordering. Oper Res 1–46 Taleizadeh AA (2018) A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial backordering. Ann Oper Res 261(1):303–337 Taleizadeh AA, Stojkovska I, Pentico DW (2015) An economic order quantity model with partial backordering and incremental discount. Comput Ind Eng 82:21–32 Taleizadeh AA, Hazarkhani B, Moon I (2020) Joint pricing and inventory decisions with carbon emission considerations, partial backordering and planned discounts. Ann Oper Res 290(1):95–113 Taleizadeh AA, Sarkar B, Hasani M (2020) Delayed payment policy in multi-product single-machine economic production quantity model with repair failure and partial backordering. J Ind Manag Optim 16(3):1273 Taleizadeh AA, Shokr I, Joali F (2020) Optimizing vendor-managed inventory systems with limited storage capacity and partial backordering under stochastic demand. RAIRO-Oper Res 54(1):179–209 Taleizadeh AA, Khanbaglo MPS, Cardenas-Barron LE (2020) Replenishment of imperfect items in an EOQ inventory model with partial backordering. RAIRO-Oper Res 54(2):413–434 Taleizadeh AA, Tafakkori K, Thaichon P (2021) Resilience toward supply disruptions: a stochastic inventory control model with partial backordering under the base stock policy. J Retail Consum Serv 58:102291 Tarasov VE, Tarasova VV (2016) Long and short memory in economics: fractional-order difference and differentiation. J of Mana Soc Sci 5(2):327–334 Tarasova VV, Tarasov VE (2016) Memory effects in hereditary Keynesian model. Pro Mod Sci Edu 80:55–60