An introduction to the algebraic geometry of the Putman–Wieland conjecture
Tóm tắt
We give algebraic and geometric perspectives on our prior results toward the Putman–Wieland conjecture. This leads to interesting new constructions of families of “origami” curves whose Jacobians have high-dimensional isotrivial isogeny factors. We also explain how a hyperelliptic analogue of the Putman–Wieland conjecture fails, following work of Marković.
Tài liệu tham khảo
Aulicino, D., Norton, C.: Shimura–Teichmüller curves in genus 5 (2019). arXiv:1904.01625v2
Boggi, M.: Notes on hyperelliptic mapping class groups (2021). arXiv:2110.13534v2
Boggi, M.: Retraction of: Linear representations of hyperelliptic mapping class groups. Michigan Math. J. 71(1), 221 (2022)
Boggi, M.: Linear representations of hyperelliptic mapping class groups (2022). arXiv:2110.13534v3
Bogomolov, F., Tschinkel, Yu.: On curve correspondences. In: Communications in Arithmetic Fundamental Groups (Kyoto, 1999/2001). Sūrikaisekikenkyūsho Kōkyūroku, vol. 1267, pp. 157–166. Research Institute for Mathematical Sciences, Kyoto (2002)
Bogomolov, F., Tschinkel, Yu.: On curve correspondences (2004). https://www.math.nyu.edu/~tschinke/papers/yuri/02genram/genram.pdf
Chevalley, C., Weil, A., Hecke, E.: Über das verhalten der integrale 1. gattung bei automorphismen des funktionenkörpers. Abh. Math. Sem. Univ. Hamburg 10(1), 358–361 (1934)
Deligne, P.: Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)
Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)
González Díez, G., Harvey, W.J.: Moduli of Riemann surfaces with symmetry. In: Harvey, W.J., Maclachlan, C. (eds.) Discrete Groups and Geometry (Birmingham, 1991). London Mathematical Society Lecture Note Series, vol. 173, pp. 75–93. Cambridge University Press, Cambridge (1992)
Grunewald, F., Larsen, M., Lubotzky, A., Malestein, J.: Arithmetic quotients of the mapping class group. Geom. Funct. Anal. 25(5), 1493–1542 (2015)
Group description c4.10d4. https://people.maths.bris.ac.uk/~matyd/GroupNames/1/C4.10D4.html. Accessed 9 Aug 2022
Harvey, W.J.: On branch loci in Teichmüller space. Trans. Amer. Math. Soc. 153, 387–399 (1971)
Ivanov, N.V.: Fifteen problems about the mapping class groups. In: Farb, B. (ed.) Problems on Mapping Class Groups and Related Topics. Proceedings of Symposia in Pure Mathematics, vol. 74, pp. 71–80. American Mathematical Society, Providence (2006)
Katz, N.M.: Algebraic solutions of differential equations (\(p\)-curvature and the Hodge filtration). Invent. Math. 18(1–2), 1–118 (1972)
Kirby, R.: Problems in low-dimensional topology. In: Kazez, W.H. (ed.) Geometric Topology (Athens, GA, 1993). AMS/IP Studies in Advanced Mathematics, vol. 2.2, pp. 35–473. American Mathematical Society, Providence (1997)
Landesman, A., Litt, D.: Canonical representations of surface groups (2022). arXiv:2205.15352v1
Landesman, A., Litt, D.: Geometric local systems on very general curves and isomonodromy (2022). arXiv:2202.00039v2
Looijenga, E.: Prym representations of mapping class groups. Geom. Dedicata 64(1), 69–83 (1997)
Möller, M.: Shimura and Teichmüller curves. J. Mod. Dyn. 5(1), 1–32 (2011)
Marković, V.: Unramified correspondences and virtual properties of mapping class groups. Bull. London Math. Soc. 54(6), 2324–2337 (2022)
McMullen, C.T.: Braid groups and Hodge theory. Math. Ann. 355(3), 893–946 (2013)
Naeff, R.: The Chevalley–Weil Formula. Master’s Thesis (2005)
Putman, A., Wieland, B.: Abelian quotients of subgroups of the mappings class group and higher Prym representations. J. London Math. Soc. 88(1), 79–96 (2013)
Symplectically self dual \(2\) dimensional representations. https://people.maths.bris.ac.uk/~matyd/GroupNames/R.html#dim2-. Accessed 9 August 2022