An introduction to right-angled Artin groups

Geometriae Dedicata - Tập 125 Số 1 - Trang 141-158 - 2007
Ruth Charney1
1Department of Mathematics, Brandeis University, Waltham, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abrams A. (2002). Configuration spaces of colored graphs. Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata 92: 185–194

Abrams A. and Ghrist R. (2002). Finding topology in a factory: configuration spaces. Am. Math. Monthly 109(2): 140–150

Allcock D. (2002). Braid pictures for Artin groups. Trans. AMS 354: 3455–3474

Altobelli J. (1998). The word problem for Artin groups of FC type. J. Pure Appl. Algebra 129(1): 1–22

Baudisch A. (1981). Subgroups of semifree groups. Acta Math. Acad. Sci. Hung. 38(1–4): 19–28

Behrstock, J., Neumann, W.: Quasi-isometric classification of graph manifolds groups. Duke Math. J.

Bell R. (2005). Three-dimensional FC Artin groups are CAT(0). Geom. Dedicata 113: 21–53

Bestvina M. (1999). Non-positively curved aspects of Artin groups of finite type. Geom. Topol. 3: 269–302

Bestvina M. and Brady N. (1997). Morse theory and finiteness properties for groups. Invent. Math. 129: 445–470

Bigelow S. (2001). Braid groups are linear. J. Amer. Math. Soc. 14(2): 471–486

Bowers P. and Ruane K. (1996). Boundaries of nonpositively curved groups of the form G × Z n . Glasgow Math. J. 38(2): 177–189

Brady N. and Crisp J. (2002). Two-dimensional Artin groups with CAT(0) dimension three. Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000). Geom. Dedicata 94: 185–214

Brady N. and Meier J. (2001). Connectivity at infinity for right angled Artin groups. Trans. Am. Math. Soc. 353(1): 117–132

Brady T. (2000). Artin groups of finite type with three generators. Mich. Math J. 47: 313–324

Brady T. and McCammond J. (2000). Three-generator Artin groups of large type are biautomatic. J. Pure Appl. Algebra 151: 1–9

Brady T. and Watt C. (2002). K(π, 1)’s for Artin groups of finite type. Geom. Dedicata 94: 225–250

Brändén, P.: Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture. Electron. J. Combin. 11 (2) 15, (2004/06) Research Paper 9

Bridson M. and Haefliger A. (1999). Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin

Brieskorn E. (1971). Die Fundamentalgruppe des Raumes der regulren Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12: 57–61

Brieskorn E. and Saito K. (1972). Artin-gruppen und Coxeter-gruppen. Invent. Math. 17: 245–271

Charney R. (1992). Artin groups of finite type are biautomatic. Math. Ann.alen 292: 671–683

Charney R. (1995). Geodesic automation and growth functions for Artin groups of finite type. Math. Ann. 301: 307–324

Charney R. (2004). The Deligne complex for the four-strand braid group. Trans. Am. Math. Soc. 356(10): 3881–3897

Charney R. and Crisp J. (2005). Automorphism groups of some affine and finite type Artin groups. Math. Res. Lett. 12(2–3): 321–333

Charney, R., Crisp, J., Vogtmann,K.: Automorphisms of 2-dimensional right-angled Artin groups. math. GR/0610980

Charney R. and Davis M. (1995). The K(π,1)-problem for hyperplane complements associated to infinite reflection groups. J. Am. Math. Soc. 8: 597–627

Charney R. and Davis M. (1995). Finite K(π,1)’s for Artin groups. In: Quinn, F. (eds) Prospects in Topology., pp 110–124. Ann. of Math. Stud., vol. 138

Charney R. and Davis M. (1995). The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pacific J. Math. 171(1): 117–137

Charney R. and Peifer D. (2003). The K(π,1) conjecture for the affine braid groups. Comment. Math. Helv. 78(3): 584–600

Chermak A. (1998). Locally non-spherical Artin groups. J. Algebra 200(1): 56–98

Cohen A. and Wales D. (2002). Linearity of Artin groups of finite type. Isreal J. of Math. 131: 101–123

Crisp J. and Paris L. (2001). The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group. Invent. Math. 145(1): 19–36

Crisp J. and Wiest B. (2004). Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebr. Geom. Topol. 4: 439–472

Croke C. and Kleiner B. (2000). Spaces with nonpositive curvature and their ideal boundaries. Topology 39: 549–556

Culler M. and Vogtmann K. (1986). Moduli of graphs and automorphisms of free groups. Invent. Math. 84: 91–119

Davis M. (1983). Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math. (2) 117(2): 293–324

Davis M. (1998). The cohomology of a Coxeter group with group ring coefficients. Duke Math. J. 91(2): 297–314

Davis M. and Januszkiewicz T. (2000). Right-angled Artin groups are commensurable with right-angled Coxeter groups. J. Pure Appl. Algebra 153(3): 229–235

Davis M. and Leary I. (2003). The l 2-cohomology of Artin groups. J. Lond. Math. Soc. (2) 68(2): 493–510

Davis M. and Meier J. (2002). The topology at infinity of Coxeter groups and buildings. Comment. Math. Helv. 77(4): 746–766

Davis M. and Okun B. (2001). Vanishing theorems and conjectures for the ℓ 2-homology of right-angled Coxeter groups. Geom. Topol. 5: 7–74

Deligne P. (1972). Les immeubles des groupes de tresses généralisés. Invent. Math. 17: 273–302

Digne F. (2006). Presentations duales des groupes de tresses de type affine A͂. Comment. Math. Helv. 81(1): 23–47

Droms C. (1987). Graph groups, coherence and three-manifolds. J. Algebra 106(2): 484–489

Droms C. (1987). Isomorphisms of graph groups. Proc. Am. Math. Soc. 100(3): 407–408

Droms C. (1987). Subgroups of graph groups. J. Algebra 110(2): 519–522

Droms C., Servatius B. and Servatius H. (1989). Surface subgroups of graph groups. Proc. Am. Math. Soc. 106(3): 573–578

Epstein D., Cannon J., Holt D., Levy S., Paterson M. and Thurston W. (1992). Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA

Farley D. and Sabalka L. (2005). Discrete Morse theory and graph braid groups. Algebr. Geom. Topol. 5: 1075–1109

Formanek E. and Procesi C. (1992). The automorphism group of a free group is not linear. J. Algebra 149(2): 494–499

Fox R. and Neuwirth L. (1962). The braid groups. Math. Scand. 10: 119–126

Garside F. (1969). The braid group and other groups. Q. J. Math. Oxford 20: 235–254

Ghrist, R.: Configuration Spaces and Braid Groups on Graphs in Robotics, Knots, Braids, and Mapping Class Groups—Papers Dedicated to Joan S. Birman (New York, 1998). AMS/IP Stud. Adv. Math., vol. (24). pp 29–40. Amer. Math. Soc., Providence, RI (2001)

Ghrist R. and Peterson V. (2007). The geometry and topology of reconfiguration. Adv. Appl. Math. 38: 302–323

Ghrist R. and LaValle S. (2006). Nonpositive curvature and Pareto-optimal coordination of robots, to appear in SIAM J. Control Optim. 45(5): 1697–1713

Green, E.: Graph Products of Groups, Thesis, The University of Leeds (1990)

Gromov M. Hyperbolic Groups. Essays in Group Theory, 75–263, Math. Sci. Res. Inst. Publ., 8, Springer, New York (1987)

Hermiller S. and Meier J. (1995). Algorithms and geometry for graph products of groups. J. Algebra 171(1): 230–257

Hsu T. and Wise D. (1999). On linear and residual properties of graph products. Mich. Math. J. 46(2): 251–259

Hsu T. and Wise D. (2002). Separating quasiconvex subgroups of right-angled Artin groups. Math. Z. 240(3): 521–548

Jensen C. and Meier J. (2005). The cohomology of right-angled Artin groups with group ring coefficients. Bull. Lond. Math. Soc. 37(5): 711–718

Krammer D. (2002). Braid groups are linear. Ann. Math. (2) 155(1): 131–156

Laurence M. (1995). A generating set for the automorphism group of a graph group. J. Lond. Math. Soc. (2) 52: 318–334

Leary I. and Nucinkis B. (2003). A. Some groups of type VF. Invent. Math. 151(1): 135–165

van der Lek, H.: The Homotopy Type of Complex Hyperplane Complements, Ph.D. thesis, Nijmegan (1983)

Meier J., Meinert H. and VanWyk L. (1998). Higher generation subgroup sets and the Σ-invariants of graph groups. Comment. Math. Helv. 73(1): 22–44

Meier J. and VanWyk L. (1995). The Bieri-Neumann-Strebel invariants for graph groups. Proc. Lond. Math. Soc. (3) 71(2): 263–280

Metaftsis V. and Raptis E. (2004). Subgroup separability of graphs of abelian groups. Proc. Am. Math. Soc. 132(7): 1873–1884

Metaftsis, V., Raptis, E.: On the profinite topology of right-angled Artin groups, math.GR/0608190

Niblo G. and Reeves L. (1998). The geometry of cube complexes and the complexity of their fundamental groups. Topology 37: 621–633

Papadima S. and Suciu A. (2006). Algebraic invariants for right-angled Artin groups. Math. Ann. 334(3): 533–555

Peifer D. (1996). Artin groups of extra-large type are biautomatic. J. Pure Appl. Algebra 110: 15–56

Reiner V. and Welker V. (2005). On the Charney–Davis and Neggers–Stanley conjectures. J. Combin. Theory Ser. A 109(2): 247–280

Sabalka, L.: Embedding right-angled Artin groups into graph braid groups. Geom Dedicata

Sageev M. and Wise D. (2005). The Tits alternative for CAT(0) cubical complexes. Bull. Lond Math. Soc. 37(5): 706–710

Salvetti M. (1987). Topology of the complement of real hyperplanes in $${\mathbb{C}}^n$$ . Invent. Math. 88: 603–618

Servatius H. (1989). Automorphisms of graph groups. J. Algebra 126: 34–60

Scott, R.: Right-angled mock reflection and mock Artin groups. Trans. Am. Math. Soc. to appear

VanWyk L. (1994). Graph groups are biautomatic. J. Pure Appl. Algebra 94(3): 341–352

Vinberg E. (1971). Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR Ser. Mat. 35: 1072–1112

Wilson J. (2005). A CAT(0) group with uncountably many distinct boundaries. J. Group Theory 8(2): 229–238