An introduction to right-angled Artin groups
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abrams A. (2002). Configuration spaces of colored graphs. Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata 92: 185–194
Abrams A. and Ghrist R. (2002). Finding topology in a factory: configuration spaces. Am. Math. Monthly 109(2): 140–150
Altobelli J. (1998). The word problem for Artin groups of FC type. J. Pure Appl. Algebra 129(1): 1–22
Behrstock, J., Neumann, W.: Quasi-isometric classification of graph manifolds groups. Duke Math. J.
Bestvina M. (1999). Non-positively curved aspects of Artin groups of finite type. Geom. Topol. 3: 269–302
Bestvina M. and Brady N. (1997). Morse theory and finiteness properties for groups. Invent. Math. 129: 445–470
Bowers P. and Ruane K. (1996). Boundaries of nonpositively curved groups of the form G × Z n . Glasgow Math. J. 38(2): 177–189
Brady N. and Crisp J. (2002). Two-dimensional Artin groups with CAT(0) dimension three. Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000). Geom. Dedicata 94: 185–214
Brady N. and Meier J. (2001). Connectivity at infinity for right angled Artin groups. Trans. Am. Math. Soc. 353(1): 117–132
Brady T. and McCammond J. (2000). Three-generator Artin groups of large type are biautomatic. J. Pure Appl. Algebra 151: 1–9
Brändén, P.: Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture. Electron. J. Combin. 11 (2) 15, (2004/06) Research Paper 9
Bridson M. and Haefliger A. (1999). Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin
Brieskorn E. (1971). Die Fundamentalgruppe des Raumes der regulren Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12: 57–61
Charney R. (1995). Geodesic automation and growth functions for Artin groups of finite type. Math. Ann. 301: 307–324
Charney R. (2004). The Deligne complex for the four-strand braid group. Trans. Am. Math. Soc. 356(10): 3881–3897
Charney R. and Crisp J. (2005). Automorphism groups of some affine and finite type Artin groups. Math. Res. Lett. 12(2–3): 321–333
Charney, R., Crisp, J., Vogtmann,K.: Automorphisms of 2-dimensional right-angled Artin groups. math. GR/0610980
Charney R. and Davis M. (1995). The K(π,1)-problem for hyperplane complements associated to infinite reflection groups. J. Am. Math. Soc. 8: 597–627
Charney R. and Davis M. (1995). Finite K(π,1)’s for Artin groups. In: Quinn, F. (eds) Prospects in Topology., pp 110–124. Ann. of Math. Stud., vol. 138
Charney R. and Davis M. (1995). The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pacific J. Math. 171(1): 117–137
Charney R. and Peifer D. (2003). The K(π,1) conjecture for the affine braid groups. Comment. Math. Helv. 78(3): 584–600
Cohen A. and Wales D. (2002). Linearity of Artin groups of finite type. Isreal J. of Math. 131: 101–123
Crisp J. and Paris L. (2001). The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group. Invent. Math. 145(1): 19–36
Crisp J. and Wiest B. (2004). Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebr. Geom. Topol. 4: 439–472
Croke C. and Kleiner B. (2000). Spaces with nonpositive curvature and their ideal boundaries. Topology 39: 549–556
Culler M. and Vogtmann K. (1986). Moduli of graphs and automorphisms of free groups. Invent. Math. 84: 91–119
Davis M. (1983). Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math. (2) 117(2): 293–324
Davis M. (1998). The cohomology of a Coxeter group with group ring coefficients. Duke Math. J. 91(2): 297–314
Davis M. and Januszkiewicz T. (2000). Right-angled Artin groups are commensurable with right-angled Coxeter groups. J. Pure Appl. Algebra 153(3): 229–235
Davis M. and Leary I. (2003). The l 2-cohomology of Artin groups. J. Lond. Math. Soc. (2) 68(2): 493–510
Davis M. and Meier J. (2002). The topology at infinity of Coxeter groups and buildings. Comment. Math. Helv. 77(4): 746–766
Davis M. and Okun B. (2001). Vanishing theorems and conjectures for the ℓ 2-homology of right-angled Coxeter groups. Geom. Topol. 5: 7–74
Digne F. (2006). Presentations duales des groupes de tresses de type affine A͂. Comment. Math. Helv. 81(1): 23–47
Droms C., Servatius B. and Servatius H. (1989). Surface subgroups of graph groups. Proc. Am. Math. Soc. 106(3): 573–578
Epstein D., Cannon J., Holt D., Levy S., Paterson M. and Thurston W. (1992). Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA
Farley D. and Sabalka L. (2005). Discrete Morse theory and graph braid groups. Algebr. Geom. Topol. 5: 1075–1109
Formanek E. and Procesi C. (1992). The automorphism group of a free group is not linear. J. Algebra 149(2): 494–499
Ghrist, R.: Configuration Spaces and Braid Groups on Graphs in Robotics, Knots, Braids, and Mapping Class Groups—Papers Dedicated to Joan S. Birman (New York, 1998). AMS/IP Stud. Adv. Math., vol. (24). pp 29–40. Amer. Math. Soc., Providence, RI (2001)
Ghrist R. and Peterson V. (2007). The geometry and topology of reconfiguration. Adv. Appl. Math. 38: 302–323
Ghrist R. and LaValle S. (2006). Nonpositive curvature and Pareto-optimal coordination of robots, to appear in SIAM J. Control Optim. 45(5): 1697–1713
Green, E.: Graph Products of Groups, Thesis, The University of Leeds (1990)
Gromov M. Hyperbolic Groups. Essays in Group Theory, 75–263, Math. Sci. Res. Inst. Publ., 8, Springer, New York (1987)
Hermiller S. and Meier J. (1995). Algorithms and geometry for graph products of groups. J. Algebra 171(1): 230–257
Hsu T. and Wise D. (1999). On linear and residual properties of graph products. Mich. Math. J. 46(2): 251–259
Hsu T. and Wise D. (2002). Separating quasiconvex subgroups of right-angled Artin groups. Math. Z. 240(3): 521–548
Jensen C. and Meier J. (2005). The cohomology of right-angled Artin groups with group ring coefficients. Bull. Lond. Math. Soc. 37(5): 711–718
Laurence M. (1995). A generating set for the automorphism group of a graph group. J. Lond. Math. Soc. (2) 52: 318–334
Leary I. and Nucinkis B. (2003). A. Some groups of type VF. Invent. Math. 151(1): 135–165
van der Lek, H.: The Homotopy Type of Complex Hyperplane Complements, Ph.D. thesis, Nijmegan (1983)
Meier J., Meinert H. and VanWyk L. (1998). Higher generation subgroup sets and the Σ-invariants of graph groups. Comment. Math. Helv. 73(1): 22–44
Meier J. and VanWyk L. (1995). The Bieri-Neumann-Strebel invariants for graph groups. Proc. Lond. Math. Soc. (3) 71(2): 263–280
Metaftsis V. and Raptis E. (2004). Subgroup separability of graphs of abelian groups. Proc. Am. Math. Soc. 132(7): 1873–1884
Metaftsis, V., Raptis, E.: On the profinite topology of right-angled Artin groups, math.GR/0608190
Niblo G. and Reeves L. (1998). The geometry of cube complexes and the complexity of their fundamental groups. Topology 37: 621–633
Papadima S. and Suciu A. (2006). Algebraic invariants for right-angled Artin groups. Math. Ann. 334(3): 533–555
Peifer D. (1996). Artin groups of extra-large type are biautomatic. J. Pure Appl. Algebra 110: 15–56
Reiner V. and Welker V. (2005). On the Charney–Davis and Neggers–Stanley conjectures. J. Combin. Theory Ser. A 109(2): 247–280
Sabalka, L.: Embedding right-angled Artin groups into graph braid groups. Geom Dedicata
Sageev M. and Wise D. (2005). The Tits alternative for CAT(0) cubical complexes. Bull. Lond Math. Soc. 37(5): 706–710
Salvetti M. (1987). Topology of the complement of real hyperplanes in $${\mathbb{C}}^n$$ . Invent. Math. 88: 603–618
Vinberg E. (1971). Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR Ser. Mat. 35: 1072–1112
Wilson J. (2005). A CAT(0) group with uncountably many distinct boundaries. J. Group Theory 8(2): 229–238