An introduction to ROC analysis

Pattern Recognition Letters - Tập 27 Số 8 - Trang 861-874 - 2006
Tom Fawcett1
1Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bradley, 1997, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn., 30, 1145, 10.1016/S0031-3203(96)00142-2

Breiman, 1984

Clearwater, 1991, A rule-learning program in high energy physics event classification, Comput. Phys. Commun., 67, 159, 10.1016/0010-4655(91)90014-C

Domingos, P., 1999. MetaCost: A general method for making classifiers cost-sensitive. In: Proc. Fifth ACM SIGKDD Internat. Conf.on Knowledge Discovery and Data Mining, pp. 155–164.

Egan, 1975, Signal detection theory and ROC analysis

Fawcett, T., 2001. Using rule sets to maximize ROC performance. In: Proc. IEEE Internat. Conf. on Data Mining (ICDM-2001), pp. 131–138.

Fawcett, 1996, Combining data mining and machine learning for effective user profiling, 8

Fawcett, 1997, Adaptive fraud detection, Data Mining and Knowledge Discovery, 1, 291, 10.1023/A:1009700419189

Flach, 2003, Repairing concavities in ROC curves, 38

Forman, G., 2002. A method for discovering the insignificance of one’s best classifier and the unlearnability of a classification task. In: Lavrac, N., Motoda, H., Fawcett, T. (Eds.), Proc. First Internat. Workshop on Data Mining Lessons Learned (DMLL-2002). Available from: http://www.purl.org/NET/tfawcett/DMLL-2002/Forman.pdf.

Hand, 2001, A simple generalization of the area under the ROC curve to multiple class classification problems, Mach. Learning, 45, 171, 10.1023/A:1010920819831

Hanley, 1982, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143, 29, 10.1148/radiology.143.1.7063747

Holte, R., 2002. Personal communication.

Kubat, 1998, Machine learning for the detection of oil spills in satellite radar images, Machine Learning, 30, 195, 10.1023/A:1007452223027

Lane, T., 2000. Extensions of ROC analysis to multi-class domains. In: Dietterich, T., Margineantu, D., Provost, F., Turney, P. (Eds.), ICML-2000 Workshop on Cost-Sensitive Learning.

Lewis, 1990, Representation quality in text classification: An introduction and experiment, 288

Lewis, 1991, Evaluating text categorization, 312

Macskassy, S., Provost, F., 2004. Confidence bands for ROC curves: Methods and an empirical study. In: Proc. First Workshop on ROC Analysis in AI (ROCAI-04).

Provost, F., Domingos, P., 2001. Well-trained PETs: Improving probability estimation trees, CeDER Working Paper #IS-00-04, Stern School of Business, New York University, NY, NY 10012.

Provost, 1997, Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions, 43

Provost, 1998, Robust classification systems for imprecise environments, 706

Provost, 2001, Robust classification for imprecise environments, Mach. Learning, 42, 203, 10.1023/A:1007601015854

Provost, 1998, The case against accuracy estimation for comparing induction algorithms, 445

Saitta, 1998, Learning in the “real world”, Mach. Learning, 30, 133, 10.1023/A:1007448122119

Spackman, 1989, Signal detection theory: Valuable tools for evaluating inductive learning, 160

Srinivasan, A., 1999. Note on the location of optimal classifiers in n-dimensional ROC space. Technical Report PRG-TR-2-99, Oxford University Computing Laboratory, Oxford, England. Available from: <http://citeseer.nj.nec.com/srinivasan99note.html>.

Swets, 1988, Measuring the accuracy of diagnostic systems, Science, 240, 1285, 10.1126/science.3287615

Swets, 2000, Better decisions through science, Scientific American, 283, 82, 10.1038/scientificamerican1000-82

van der Putten, P., van Someren, M., 2000. CoIL challenge 2000: The insurance company case. Technical Report 2000–09, Leiden Institute of Advanced Computer Science, Universiteit van Leiden. Available from: <http://www.liacs.nl/putten/library/cc2000>.

Zadrozny, B., Elkan, C., 2001. Obtaining calibrated probability estimates from decision trees and naive Bayesian classiers. In: Proc. Eighteenth Internat. Conf. on Machine Learning, pp. 609–616.

Zou, K.H., 2002. Receiver operating characteristic (ROC) literature research. On-line bibliography available from: <http://splweb.bwh.harvard.edu:8000/pages/ppl/zou/roc.html>.