An introduction to ROC analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bradley, 1997, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn., 30, 1145, 10.1016/S0031-3203(96)00142-2
Breiman, 1984
Clearwater, 1991, A rule-learning program in high energy physics event classification, Comput. Phys. Commun., 67, 159, 10.1016/0010-4655(91)90014-C
Domingos, P., 1999. MetaCost: A general method for making classifiers cost-sensitive. In: Proc. Fifth ACM SIGKDD Internat. Conf.on Knowledge Discovery and Data Mining, pp. 155–164.
Egan, 1975, Signal detection theory and ROC analysis
Fawcett, T., 2001. Using rule sets to maximize ROC performance. In: Proc. IEEE Internat. Conf. on Data Mining (ICDM-2001), pp. 131–138.
Fawcett, 1996, Combining data mining and machine learning for effective user profiling, 8
Fawcett, 1997, Adaptive fraud detection, Data Mining and Knowledge Discovery, 1, 291, 10.1023/A:1009700419189
Flach, 2003, Repairing concavities in ROC curves, 38
Forman, G., 2002. A method for discovering the insignificance of one’s best classifier and the unlearnability of a classification task. In: Lavrac, N., Motoda, H., Fawcett, T. (Eds.), Proc. First Internat. Workshop on Data Mining Lessons Learned (DMLL-2002). Available from: http://www.purl.org/NET/tfawcett/DMLL-2002/Forman.pdf.
Hand, 2001, A simple generalization of the area under the ROC curve to multiple class classification problems, Mach. Learning, 45, 171, 10.1023/A:1010920819831
Hanley, 1982, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143, 29, 10.1148/radiology.143.1.7063747
Holte, R., 2002. Personal communication.
Kubat, 1998, Machine learning for the detection of oil spills in satellite radar images, Machine Learning, 30, 195, 10.1023/A:1007452223027
Lane, T., 2000. Extensions of ROC analysis to multi-class domains. In: Dietterich, T., Margineantu, D., Provost, F., Turney, P. (Eds.), ICML-2000 Workshop on Cost-Sensitive Learning.
Lewis, 1990, Representation quality in text classification: An introduction and experiment, 288
Lewis, 1991, Evaluating text categorization, 312
Macskassy, S., Provost, F., 2004. Confidence bands for ROC curves: Methods and an empirical study. In: Proc. First Workshop on ROC Analysis in AI (ROCAI-04).
Provost, F., Domingos, P., 2001. Well-trained PETs: Improving probability estimation trees, CeDER Working Paper #IS-00-04, Stern School of Business, New York University, NY, NY 10012.
Provost, 1997, Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions, 43
Provost, 1998, Robust classification systems for imprecise environments, 706
Provost, 2001, Robust classification for imprecise environments, Mach. Learning, 42, 203, 10.1023/A:1007601015854
Provost, 1998, The case against accuracy estimation for comparing induction algorithms, 445
Spackman, 1989, Signal detection theory: Valuable tools for evaluating inductive learning, 160
Srinivasan, A., 1999. Note on the location of optimal classifiers in n-dimensional ROC space. Technical Report PRG-TR-2-99, Oxford University Computing Laboratory, Oxford, England. Available from: <http://citeseer.nj.nec.com/srinivasan99note.html>.
Swets, 1988, Measuring the accuracy of diagnostic systems, Science, 240, 1285, 10.1126/science.3287615
Swets, 2000, Better decisions through science, Scientific American, 283, 82, 10.1038/scientificamerican1000-82
van der Putten, P., van Someren, M., 2000. CoIL challenge 2000: The insurance company case. Technical Report 2000–09, Leiden Institute of Advanced Computer Science, Universiteit van Leiden. Available from: <http://www.liacs.nl/putten/library/cc2000>.
Zadrozny, B., Elkan, C., 2001. Obtaining calibrated probability estimates from decision trees and naive Bayesian classiers. In: Proc. Eighteenth Internat. Conf. on Machine Learning, pp. 609–616.
Zou, K.H., 2002. Receiver operating characteristic (ROC) literature research. On-line bibliography available from: <http://splweb.bwh.harvard.edu:8000/pages/ppl/zou/roc.html>.