An intrinsic rigidity theorem for minimal submanifolds in a sphere

An-Min Li1, Li Anmin Li Jimin2
1Deparment of Mathematics, Sichuan University, Chengdu, Sichuan, P. R. China
2Civil Engineering Department, Chongqing Architectural Engineering Institute, Chongqing, Sichuan, P. R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

K. Benko, M. Kothe, K. D. Semmler andU. Simon, Eigenvalues of the Laplacian and Curvature. Colloq. Math.42, 19?31 (1979).

B. Y. Chen andC. S. Houh, Totally Real Submanifolds of a Quaternion Projective Space. Ann. Mat. Pura Appl.120, 185?199 (1979).

S. S.Chern, M.do Carmo and S.Kobayashi, Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length. Shiing-shen Chern Selected Papers, 393?409, Berlin-Heidelberg-New York 1978.

Y. B. Shen, On Intrinsic Rigidity for Minimal Submaifolds in a Sphere. Scie. China (Ser. A),32, 769?781 (1989).

Y. B. Shen, Totally Real Minimal Submanifolds in a Quaternion Projective Space. Preprint, Hangzhou University, China 1988.

B.Wu and H.Song, 3-dimensional Minimal Submanifolds of a Sphere. Acta Math. Sinica, to appear (Chinese).

G. Wu andW. Chen, An Inequality for Matrices and Its Applications in Geometry. Acta Math. Sinica (3)31, 348?355, 1988 (Chinese).

G.Zhao, A Rigidity Theorem for Totally Real Minimal Submanifolds in a Complex Projective Space. J. Sichuan Univ., to appear.