An internally consistent thermodynamic data set for phases of petrological interest
Tóm tắt
The thermodynamic properties of 154 mineral end‐members, 13 silicate liquid end‐members and 22 aqueous fluid species are presented in a revised and updated data set. The use of a temperature‐dependent thermal expansion and bulk modulus, and the use of high‐pressure equations of state for solids and fluids, allows calculation of mineral–fluid equilibria to 100 kbar pressure or higher. A pressure‐dependent Landau model for order–disorder permits extension of disordering transitions to high pressures, and, in particular, allows the alpha–beta quartz transition to be handled more satisfactorily. Several melt end‐members have been included to enable calculation of simple phase equilibria and as a first stage in developing melt mixing models in NCKFMASH. The simple aqueous species density model has been extended to enable speciation calculations and mineral solubility determination involving minerals and aqueous species at high temperatures and pressures. The data set has also been improved by incorporation of many new phase equilibrium constraints, calorimetric studies and new measurements of molar volume, thermal expansion and compressibility. This has led to a significant improvement in the level of agreement with the available experimental phase equilibria, and to greater flexibility in calculation of complex mineral equilibria. It is also shown that there is very good agreement between the data set and the most recent available calorimetric data.
Từ khóa
Tài liệu tham khảo
Baker J., 1995, Thermal expansion of scapolite., American Mineralogist, 79, 878
Baker J., 1994, Standard thermodynamic properties of meionite, Ca4Al6Si6O24CO3, from experimental phase equilibria., American Mineralogist, 79, 478
Berman R. G., 1987, Development of models for multicomponent melts: analysis of synthetic systems. In:, Reviews in Mineralogy, 17, 405
BowmanA. F.1975;An investigation of Al2SiO5phase equilibrium utilizing the scanning electron microscopeMS thesis University of Oregon Eugene Oregon USA.
Carey J. W., 1992, The molar enthalpy of dehydration of cordierite., American Mineralogist, 77, 930
Carman J. H., 1974, Synthetic sodium phlogopite and its two hydrates: Stabilities, properties and mineralogic implications., American Mineralogist, 59, 261
Carpenter M. A., 1994, Thermodynamics of non‐convergent cation ordering in minerals, II: spinels and the orthopyroxene solid solution., American Mineralogist, 79, 1068
Carpenter M. A., 1994, Thermodynamics of non‐convergent cation ordering in minerals, III: order parameter coupling in K‐feldspar., American Mineralogist, 79, 1084
Carrington D. P., 1995, Partial melting and phase relations in high‐grade metapelites: an experimental petrogenetic grid in KFMASH system., Contributions to Mineralogy and Petrology, 120, 270, 10.1007/BF00306508
Chatterjee N. D., 1976, Margarite stability and compatibility relations in the system CaO‐Al2O3‐SiO2‐H2O as a pressure‐temperature indicator., American Mineralogist, 61, 699
Chopin C., 1983, Magnesiocarpholite and magnesiochloritoid: Two index minerals of pelitic blueschists and their preliminary phase relations in the model system MgO‐Al2O3‐SiO2‐H2O., American Journal of Science, 283, 72
ChopinC.&SobolevN. V.1995;Principal mineralogical indicators of UHP in crustal rocks. In:Ultrahigh Pressure Metamorphism(eds Coleman R. G. & Wang X.) pp. 96–131Cambridge University Press
Chou I. M., 1978, Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor., American Mineralogist, 63, 690
Christy A. G., 1992, A 27Al and 29Si MAS NMR and infrared spectroscopic study of Al‐Si ordering in natural and synthetic sapphirine., American Mineralogist, 77, 8
Circone S., 1992, Substitution of Al in phlogopite: High temperature solution calorimetry, heat capacities, and thermodynamic properties of the phlogopite‐eastonite join., American Mineralogist, 77, 1191
ComodiP.&ZanazziP. F.1994High pressure structural study of muscovite.IMA 16th General Meeting Pisa abstracts 79–80
Connolly J. A. D., 1985, Experimental and thermodynamic analysis of prehnite., EOS, 66
Dickenson M. P., 1986, A garnet‐chlorite geothermometer., Geological Society of America Abstracts with Programs, 18
Doroshev A. M., 1974, Upper pressure limit of stability of sapphirine., Doklady Akad Nauk SSSR, 219, 136
Duffy C. J., 1979, Phase equilibria in the system MgO‐MgF2‐SiO2‐H2O., American Mineralogist, 64, 1156
Engi M., 1983, Equilibria involving Al‐Cr spinel: Mg‐Fe exchange with olivine. Experiments, thermodynamic analysis, and consequences for geothermometry., American Journal of Science, 283, 29
Evans B. W., 1976, Stability of chrysotile and antigorite in the serpentine multisystem., Schweizerische Mineralogische Petrologische Mitteilungen, 56, 79
Finger L. W., 1976, The thermal expansion of diopside to 800 °C and a refinement of the crystal structure at 700 °C., American Mineralogist, 61, 303
Frantz J. D., 1982, Electrical conductances and ionization constants of salts, acids and bases in aqueous solutions at temperatures to 600 °C and pressures to 4000 bars., American Journal of Science, 284, 611
Ghiorso M. S., 1995, Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpretation and extrapolation of liquid‐solid equilibria in magmatic systems at elevated temperatures and pressures., Contributions to Mineralogy and Petrology, 119, 197, 10.1007/BF00307281
Goldsmith J. R., 1985, The hydrothermal melting of low and high albite., American Mineralogist, 70, 924
Goldsmith J. R., 1977, Scapolite‐plagioclase stability relations at high pressures and temperatures in the system NaAlSi3O8‐CaAl2Si2O8‐CaCO3‐CaSO4., American Mineralogist, 62, 1063
Greenwood H. J., 1967, Wollastonite: Stability in H2O‐CO2 mixtures and occurrence in a contact‐metamorphic aureole near Salmo, British Columbia, Canada., American Mineralogist, 52, 1669
GrevelK.‐D.FockenbergT.WunderB.&BurchardM.1994;Experimental determination of the equilibrium curve 2 diaspore=corundum+H2O to high pressures and modified thermodynamic data for diaspore.Terra Nova Abstract Supplement 20
GrundyH. D.&BrownW. L.1974;A high temperature X‐ray study of low and high plagioclase feldspars. In:The Feldspars(eds MacKenzie W. S. & Zussman J.) pp. 162–173Proceedings of a NATO Advanced Study Institute. University of Manchester Press
Guggenheim S., 1987, Muscovite dehydroxylation: high‐temperature studies., American Mineralogist, 72, 537
Hackler R. T., 1989, Experimental determination of Fe and Mg exchange between garnet and olivine and estimation of Fe‐Mg mixing properties in garnet., American Mineralogist, 74, 994
Harlov D. E., 1992, Experimental determination of the reaction 2 magnetite+2 kyanite+4 quartz=2 almandine+O2 at high pressure on the magnetite‐hematite buffer., American Mineralogist, 77, 558
Harlov D. E., 1993, Reversal of the metastable kyanite+corundum+quartz and andalusite+corundum+ quartz equilibria and the enthalpy of formation of kyanite and andalusite., American Mineralogist, 78, 594
HarrisonR. J.1997;Magnetic properties of the magnetite‐spinel solid solutionPhD thesis University of Cambridge.
Haselton H. T., 1988, Stability of muscovite in HCl‐KCl solutions: tetrahedral site disorder., EOS, 69
Haselton H. T., 1984, Low temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene., American Mineralogist, 69, 481
Hawthorne F. C., 1993, The crystal chemistry of staurolite: I. Crystal structure and site occupancies., Canadian Mineralogist, 31, 551
Hazen R. M., 1976, Effects of temperature and pressure on the crystal structure of forsterite., American Mineralogist, 61, 1280
Hazen R. M., 1978, The crystal structures and compressibilities of layer minerals at high pressure. II. Phlogopite and chlorite., American Mineralogist, 63, 293
Hazen R. M., 1989, The crystal chemistry of andradite and pyrope: revised procedures for high‐pressure diffraction experiments., American Mineralogist, 74, 352
Hazen R. M., 1988, Compressibility of sodalite and scapolite., American Mineralogist, 73, 1120
Helgeson H. C., 1978, Summary and critique of the thermodynamic properties of rock‐forming minerals., American Journal of Science, 278
Hemingway B. S., 1984, Heat capacity and thermodynamic functions for gehlenite and staurolite: With comments on the Schottky anomaly in the heat capacity of staurolite., American Mineralogist, 69, 307
Hemingway B. S., 1986, Akermanite: Phase transitions in heat capacity and thermal expansion, and revised thermodynamic data., Canadian Mineralogist, 24, 425
Hensen B. J., 1972, Phase relations involving pyrope, enstatitess, and sapphiriness in the system MgO‐Al2O3‐SiO2., Carnegie Institution of Washington Yearbook, 71, 421
Hewitt D. A., 1975, Stability of the assemblage phlogopite‐calcite‐quartz., American Mineralogist, 60, 391
Hewitt D. A., 1975, Physical properties of some synthetic Fe‐Mg‐Al trioctahedral biotites., American Mineralogist, 60, 854
Holland T. J. B., 1984, Stability relations of ortho‐ and clinozoisite., Natural Environment Research Council Progress Report for Research, 6, 185
Holland T. J. B., 1989, The dependence of entropy on volume for silicate and oxide minerals: a review and a predictive model., American Mineralogist, 74, 5
Holland T. J. B., 1992, Plagioclase feldspars: activity‐composition relations based upon Darken’s Quadratic Formalism and Landau theory., American Mineralogist, 77, 53
HollandT. J. B.BakerJ. M.&PowellR.1998;Mixing properties and activity–composition relationships of chlorites in the system MgO‐FeO‐Al2O3‐SiO2‐H2O.European Journal of Mineralogy(in press)
Holm J. L., 1966, The thermodynamic properties of the aluminum silicates., American Mineralogist, 51, 1608
Huckenholz H. G., 1971, Andradite stability relations in the CaSiO3‐Fe2O3 join up to 30 kb., Neues Jahrbuch für Mineralogie Abhandlungen, 114, 246
Ivaldi G., 1988, Crystal structure at 25 and 700° of magnesiochloritoid from a high pressure assemblage (Monte Rosa)., American Mineralogist, 73, 358
Jacobs G. K., 1981, Devolatilisation equilibria in H2O‐CO2 and H2O‐CO2‐NaCl fluids: an experimental and thermodynamic evaluation at elevated pressures and temperatures., American Mineralogist, 66, 1135
Jamieson H. E., 1984, The distribution of Mg and Fe2+ between olivine and spinel at 1300 °C., American Mineralogist, 69, 283
Jenkins D. M., 1991, Experimental Determination of the Pressure‐Temperature Stability Field and Thermochemical Properties of Synthetic Tremolite., American Mineralogist, 76, 458
Johannes W., 1968, Experimentelle Bestimmung von Gleichgewichtsbeziehungen im System MgO‐CO2‐H2O., Neues Jahrbuch für Mineralogie Monatshefte, 112, 15
Kerrick D. M., 1984, The andalusite‐sillimanite equilibrium revisited., Geological Society of America Abstracts with Programs, 16
KhodakovskyI. L.WestrumE. F.&HemingwayB. S.1990;CODATA International Geothermodynamic Tables. Guidelines and a set of prototype tables
King E. G., 1967, Thermodynamic properties of forsterite and serpentine., United States Bureau of Mines Report of Investigations, 6962, 4320
Kiseleva I. A., 1990, Thermodynamic properties of alkali feldspars., Geokhimiya, 3, 406
Koziol A. M., 1993, On the stability of siderite., EOS, 74
KoziolA. M.&NewtonR. C.1997;Experimental determination of the reaction: magnesite+enstatite=forsterite+CO2in the range 6–25 kbar and 700–1100 °C and the enthalpy of formation of forsterite.American Mineralogist (in press)
Krupka K. M., 1985, Low‐temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite and wollastonite., American Mineralogist, 70, 249
Krupka K. M., 1985, High‐temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite and wollastonite., American Mineralogist, 70, 261
Lager G. A., 1978, High‐temperature study of six olivines., American Mineralogist, 63, 365
Laird J., 1982, Amphiboles in metamorphosed basaltic rocks. In: Amphiboles,, MSA Reviews in Mineralogy, 9, 113
Laird J., 1989, Chlorites: Metamorphic petrology. In: Hydrous phyllosilicates (exclusive of micas),, MSA Reviews in Mineralogy, 19, 405
Lange R. A., 1990, Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. In: Modern methods of igneous petrology: understanding magmatic processes (eds Nicholls, J. & Russel, J. K.):, MSA Reviews in Mineralogy, 24, 25
Lange R. A., 1986, Phase transitions in leucite KAlSi2O6, orthorhombic KAlSiO4, and their iron analogues (KFeSi2O6, KFeSiO4)., American Mineralogist, 71, 937
Levien L., 1981, High pressure crystal structure and compressibility of coesite., American Mineralogist, 66, 324
Lindsley D. H., 1983, Pyroxene thermometry., American Mineralogist, 68, 477
Markgraf S. A., 1985, High‐temperature refinements of calcite and magnesite., American Mineralogist, 70, 590
MartensR.RosenhauerM.&GehlenV. K.1982;Compressibilities of carbonates. In:Researches in Geoscience(ed. Schreyer W.) pp. 215–222Schweizerbart’sche Verlagsbuchhandlung Stuttgart
MassonneH‐J.1995;Experimental and petrogenetic study of UHPM. In:Ultrahigh Pressure Metamorphism(eds Coleman R. G. & Wang X.) pp. 33–95Cambridge University Press
McCormick T. C., 1989, Compressibility of omphacite to 60 Kbar: role of vacancies., American Mineralogist, 74, 1287
Miller Ch., 1986, Alpine high‐pressure metamorphism in the Eastern Alps., Schweitzerische Mineralogische und Petrologische Mitteilungen, 66, 139
Mirwald P. W., 1979, Der Wassergehalt von Mg Cordierit zwischen 500 und 800 °C sowie 0, 5, und 11 kbar., Fortschritte der Mineralogie, 57, 462
Moecher D. P., 1990, Experimental investigation of andradite and hedenbergite equilibria employing the hydrogen sensor technique, with revised estimates of ΔfG for andradite and hedenbergite., American Mineralogist, 75, 1327
Moore P. B., 1969, The crystal structure of sapphirine., American Mineralogist, 54, 31
Moore P. B., 1972, Atomic arrangement of merwinite, Ca3Mg[SiO4]2, an unusual dense‐packed structure of geophysical interest., American Mineralogist, 57, 1355
Nell J., 1989, Thermodynamic properties in a multicomponent solid solution involving cation disorder: Fe3O4‐MgFe2O4‐FeAl2O4‐MgAl2O4 spinels., American Mineralogist, 74, 1000
Nelson D. O., 1993, Inferred limits to the oxidation of Fe in chlorites: a high‐temperature single‐crystal X‐ray study., American Mineralogist, 78, 1197
Newton R. C., 1993, Standard thermodynamic properties of almandine., Canadian Mineralogist, 31, 391, 10.3749/1499-1276-31.2.391
OlingerB. W.1977;Compression of forsterite (Mg2SiO4) and enstatite (MgSiO3). In:High‐pressure Research. Applications in Geophysics(eds Manghnani M. H. & Akimoto S. I.) pp. 325–334Academic Press New York
O’Neill H. St. C., 1987, Free energies of formation of NiO, CoO, Ni2SiO4, and Co2SiO4., American Mineralogist, 72, 280
St. O’Neill H. C., 1987, Quartz‐fayalite‐iron and quartz‐fayalite‐magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4)., American Mineralogist, 72, 67
O’Neill H. St. C., 1988, Systems Fe‐O and Cu‐O: thermodynamic data for the equilibria Fe‐‘‘FeO’’, Fe‐Fe3O4, Fe3O4‐Fe2O3, Cu‐Cu2O, and Cu2O‐CuO from emf measurements., American Mineralogist, 73, 470
PerchukL. L.&Lavrent’evaI. V.1983;Experimental investigation of exchange equilibria in the system cordierite‐garnet‐biotite. In:Kinetics and Equilibrium in Mineral Reactions (ed. Saxena S. K.) pp. 199–240Springer Verlag
Peterson J. W., 1990, Experimental biotite‐quartz melting in the KMASH‐CO2 system and the role of CO2 in the petrogenesis of granites and related rocks., American Mineralogist, 75, 1029
PoirierJ.‐P.1991;Introduction to the Earth’s Interior. Cambridge University Press Cambridge
Powell R., 1993, On the formulation of simple mixing models for complex phases., American Mineralogist, 78, 1174
Powell R., 1993, The applicability of least squares in the extraction of thermodynamic data from experimentally bracketed mineral equilibria., American Mineralogist, 78, 107
PutnisA.1992;Introduction to Mineral Sciences. Cambridge University Press Cambridge
Ralph R. L., 1984, Compressibility and crystal structure of andalusite at high pressure., American Mineralogist, 69, 513
RaoB.&JohannesW.1979;Further data on the stability of staurolite+quartz.Neues Jahrbuch für Mineralogie Monatshefte 437–447
Reeder R. J., 1986, High‐temperature crystal chemistry of dolomite., American Mineralogist, 71, 775
RobieR. A.&HemingwayB. S.1995;Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105Pascals) pressure and at higher temperatures.United States Geological Survey BulletinNo. 2131
RobieR. A.BethkeP. E.&BeardsleyK. M.1967;Selected X‐ray crystallographic data molar volumes and densities of minerals and related substances.United States Geological Survey BulletinNo. 1248
RobieR. A.HemingwayB. S.&FisherJ. R.1978;Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105Pascals) pressure and at higher temperatures.United States Geological Survey BulletinNo. 1452
Robie R. A., 1982, Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Ca2SiO4 between 5 and 380 K., American Mineralogist, 67, 470
Rosenberg P. E., 1967, Subsolidus relations in the system CaCO3‐MgCO3‐FeCO3 between 350 and 550 °C., American Mineralogist, 52, 787
Ross N. L., 1992, High‐pressure structural study of dolomite and ankerite., American Mineralogist, 77, 412
Schreyer W., 1969, High pressure phases in the system MgO‐Al2O3‐SiO2‐H2O., American Journal of Science, 267, 407
ShearerJ. A.1973;Thermochemistry of the garnets and some related compoundsUnpublished PhD thesis Department of Chemistry University of Chicago USA.
Smyth J. R., 1975, High‐temperature crystal chemistry of fayalite., American Mineralogist, 60, 1092
Skrok V., 1994, Die Stabilität von Lawsonit, CaAl2(OH)2.H2O, bei Drücken bis zu 50 kbar., European Journal of Mineralogy, 6
Sueno S., 1973, The high‐temperature crystal chemistry of tremolite., American Mineralogist, 58, 649
Sueno S., 1976, Orthoferrosilite: High temperature crystal chemistry., American Mineralogist, 61, 38
TakedaH.&MorosinB.1975;Comparison of observed and predicted structural parameters of mica at high temperatures.Acta Crystallographica B.31 2444–2452
VoigtR.&WillG.1981;Das System Fe2O3–H2O unter hohen Drucken.Neues Jahrbuch für Mineralogie Monatshefte 89–96
Walther J. V., 1983, The extraction‐quench technique for determination of the thermodynamic properties of solute complexes: application to quartz solubility in fluid mixtures., American Mineralogist, 68, 731
Wechsler B. A., 1984, Crystal structure of ilmenite (FeTiO2) at high temperature and at high pressure., American Mineralogist, 69, 176
Winter J. K., 1979, Thermal expansion and high‐temperature crystal chemistry of the Al2SiO5 polymorphs., American Mineralogist, 64, 573
Winter J. K., 1979, A high‐temperature structural study of high albite, monalbite and the albite‐monalbite phase transition., American Mineralogist, 64, 409
Wood B. J., 1976, The reaction phlogopite+quartz=enstatite+sanidine+H2O. Progress in Experimental Petrology,, 3rd NERC report, 6, 17
Wunder B., 1993, Synthesis, stability and properties of Al2SiO4(OH)2: a fully hydrated analogue of topaz., American Mineralogist, 78, 285
Zhang L., 1992, Compressibility of grunerite., American Mineralogist, 77, 480
Zharikov V. A., 1969, High temperature mineral equilibria in the system CaO‐SiO2‐CO2., Geochemistry International, 6, 853
Zheng J., 1996, In situ X‐ray observations of the coesite‐stishovite transition: reversed phase boundary and kinetics., Physics and Chemistry of Minerals, 23, 1
Zhu H., 1994, Enthalpy of formation of wollastonite (CaSiO3) and anorthite (CaAl2Si2O8) by experimental phase equilibrium measurements and high‐temperature solution calorimetry., American Mineralogist, 79, 134