An inter-centre statistical scale standardisation for quantitatively evaluating prostate tissue on T2-weighted MRI

Springer Science and Business Media LLC - Tập 42 - Trang 137-147 - 2019
Neda Gholizadeh1, Todsaporn Fuangrod2, Peter B. Greer3,4, Peter Lau5,6, Saadallah Ramadan1,5, John Simpson3,4
1School of Health Sciences, University of Newcastle, Callaghan, Australia
2School of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
3Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, Australia
4School of Physics and Mathematics, University Of Newcastle, Callaghan, Newcastle, Australia
5Imaging Centre, Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
6Department of Radiology, Calvary Mater Newcastle, Newcastle, Australia

Tóm tắt

Magnetic resonance images (MRI) require intensity standardisation if they are used for the purpose of quantitative analysis as inherent variations in image intensity levels between different image sets are manifest due to technical factors. One approach is to standardise the image intensity values using a statistically applied biological reference tissue. The aim of this study is to compare the performance of differing candidate biological reference tissues for standardising T2WI intensity distributions. Fifty-one prostate cancer patients across two centres with different scanners were evaluated using the percentage interpatient coefficient of variation (%interCV) for four different biological references; femoral bone marrow, ischioanal fossa, obturator-internus muscle and bladder urine. The tissue with the highest reproducibility (lowest %interCV) in both centres was used for intensity standardisation of prostate T2WI using three different statistical measures (mean, Z-score, median + Interquartile Range). The performance of different standardisation methods was evaluated from the assessment of image intensity histograms and the percentage normalised root mean square error (%NRSME) of the healthy peripheral zone tissue. Ischioanal fossa as a reference tissue demonstrated the highest reproducibility with %interCV of 18.9 for centre1 and 11.2 for centre2. Using ischioanal fossa for statistical intensity standardisation and the median + Interquartile Range method demonstrated the lowest %NRMSE across centres for healthy peripheral zone tissues. This study demonstrates ischioanal fossa as a preferred reference tissue for standardising intensity values from T2WI of the prostate. Subsequent image standardisation using the median + Interquartile Range intensity of the reference tissue demonstrated a robust and reliable standardisation method for quantitative image assessment.

Tài liệu tham khảo

Engelbrecht MR, Jager GJ, Laheij RJ, Verbeek AL, Van Lier H, Barentsz JO (2002) Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol 12(9):2294–2302 Gupta RT, Spilseth B, Patel N, Brown AF, Yu J (2016) Multiparametric prostate MRI: focus on T2-weighted imaging and role in staging of prostate cancer. Abdom Radiol 41(5):831–843 Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3):405–421 Shah M, Xiao Y, Subbanna N, Francis S, Arnold DL, Collins DL, Arbel T (2011) Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Med Image Anal 15(2):267–282 Robitaille N, Mouiha A, Crépeault B, Valdivia F, Duchesne S (2012) Tissue-based MRI intensity standardization: application to multicentric datasets. J Biomed Imaging 2012:4 Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4):198–211 Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139. https://doi.org/10.1016/j.ejmp.2017.05.071 Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA (2009) Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 30(2):327–334 Liney GP, Knowles AJ, Manton DJ, Turnbull LW, Blackband SJ, Horsman A (1996) Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: application to the prostate. J Magn Reson Imaging 6(4):603–607 Lemaître G, Rastgoo M, Massich J, Vilanova JC, Walker PM, Freixenet J, Meyer-Baese A, Mériaudeau F (2016) Martí R Normalization of t2w-mri prostate images using rician a priori. In: SPIE medical imaging. International Society for Optics and Photonics, pp 978529–978529–978527 Lewis S, Besa C, Rosen A, Rastinehad AR, Semaan S, Hectors S, Taouli B (2017) Multiparametric magnetic resonance imaging for transition zone prostate cancer: essential findings, limitations, and future directions. Abdom Radiol 42(11):2732–2744 Serai SD, Trout AT, Fleck RJ, Quinn CT, Dillman JR (2018) Measuring liver T2* and cardiac T2* in a single acquisition. Abdom Radiol. https://doi.org/10.1007/s00261-018-1477-4 Nyúl LG, Udupa JK (1999) On standardizing the MR image intensity scale. Magn Reson Med 42(6):1072–1081 Lv D, Guo X, Wang X, Zhang J, Fang J (2009) Computerized characterization of prostate cancer by fractal analysis in MR images. J Magn Reson Imaging 30(1):161–168 Madabhushi A, Udupa JK (2006) New methods of MR image intensity standardization via generalized scale. Med Phys 33(9):3426–3434 Shinohara RT, Sweeney EM, Goldsmith J, Shiee N, Mateen FJ, Calabresi PA, Jarso S, Pham DL, Reich DS, Crainiceanu CM (2014) Statistical normalization techniques for magnetic resonance imaging. NeuroImage 6:9–19 Wang S, Burtt K, Turkbey B, Choyke P, Summers RM (2014) Computer aided-diagnosis of prostate cancer on multiparametric MRI: a technical review of current research. BioMed Res Int. https://doi.org/10.1155/2014/789561 Artan Y, Haider MA, Langer DL, van der Kwast TH, Evans AJ, Yang Y, Wernick MN, Trachtenberg J, Yetik IS (2010) Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans Image Process 19(9):2444–2455 Kwak JT, Xu S, Wood BJ, Turkbey B, Choyke PL, Pinto PA, Wang S, Summers RM (2015) Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys 42(5):2368–2378 Niaf E, Rouvière O, Mège-Lechevallier F, Bratan F, Lartizien C (2012) Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys Med Biol 57(12):3833 Niaf E, Rouvière O, Lartizien C (2011) Computer-aided diagnosis for prostate cancer detection in the peripheral zone via multisequence MRI. In: SPIE medical imaging. International Society for Optics and Photonics, pp 79633P–79633P–79638 Latifoltojar A, Dikaios N, Ridout A, Moore C, Illing R, Kirkham A, Taylor S, Halligan S, Atkinson D, Allen C (2015) Evolution of multi-parametric MRI quantitative parameters following transrectal ultrasound-guided biopsy of the prostate. Prostate Cancer Prostatic Dis 18(4):343 Giannini V, Mazzetti S, Vignati A, Russo F, Bollito E, Porpiglia F, Stasi M, Regge D (2015) A fully automatic computer aided diagnosis system for peripheral zone prostate cancer detection using multi-parametric magnetic resonance imaging. Comput Med Imaging Graph 46:219–226 Daffner R, Lupetin A, Dash N, Deeb Z, Sefczek R, Schapiro R (1986) MRI in the detection of malignant infiltration of bone marrow. Am J Roentgenol 146(2):353–358 Tustison N, Gee J (2009) N4ITK: Nick’s N3 ITK implementation for MRI bias field correction. Insight J 9 Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: IEEE international symposium on biomedical imaging: nano to macro 2004. IEEE, pp 632–635 Westwood MA, Firmin DN, Gildo M, Renzo G, Stathis G, Markissia K, Vasili B, Pennell DJ (2005) Intercentre reproducibility of magnetic resonance T2* measurements of myocardial iron in Thalassaemia. Int J Cardiovasc Imaging 21(5):531–538. https://doi.org/10.1007/s10554-005-0651-2 Westwood MA, Anderson LJ, Firmin DN, Gatehouse PD, Lorenz CH, Wonke B, Pennell DJ (2003) Interscanner reproducibility of cardiovascular magnetic resonance T2* measurements of tissue iron in thalassemia. J Magn Reson Imaging 18(5):616–620 Byrum CE, MacFall JR, Charles HC, Chitilla VR, Boyko OB, Upchurch L, Smith JS, Rajagopalan P, Passe T, Kim D, Xanthakos S, Ranga K, Krishnan R (1996) Accuracy and reproducibility of brain and tissue volumes using a magnetic resonance segmentation method. Psychiatry Res 67(3):215–234 Patryla L, Galeriua D (2011) Statistical performances measures—models comparison. CEA, Paris Totty WG, Murphy WA, Ganz WI, Kumar B, Daum WJ, Siegel BA (1984) Magnetic resonance imaging of the normal and ischemic femoral head. Am J Roentgenol 143(6):1273–1280 Mitchell DG, Kressel HY, Arger PH, Dalinka M, Spritzer CE, Steinberg ME (1986) Avascular necrosis of the femoral head: morphologic assessment by MR imaging, with CT correlation. Radiology 161(3):739–742. https://doi.org/10.1148/radiology.161.3.3786725 Ebner F, Kressel HY, Mintz MC, Carlson JA, Cohen EK, Schiebler M, Gefter W, Axel L (1988) Tumor recurrence versus fibrosis in the female pelvis: differentiation with MR imaging at 1.5 T. Radiology 166(2):333–340. https://doi.org/10.1148/radiology.166.2.3422025 Glazer H, Lee J, Levitt R, Heiken J, Ling D, Totty W, Balfe D, Emani B, Wasserman T, Murphy W (1985) Radiation fibrosis: differentiation from recurrent tumor by MR imaging. Radiology 156(3):721–726 Rosenkrantz AB, Bennett GL, Doshi A, Deng F-M, Babb JS, Taneja SS (2015) T2-weighted imaging of the prostate: Impact of the BLADE technique on image quality and tumor assessment. Abdom Imaging 40(3):552–559. https://doi.org/10.1007/s00261-014-0225-7 Iordanescu G, Brendler C, Crawford SE, Wyrwicz AM, Venkatasubramanian PN, Doll JA (2015) MRS measured fatty acid composition of periprostatic adipose tissue correlates with pathological measures of prostate cancer aggressiveness. J Magn Reson Imaging 42(3):651–657