An intelligent PE-malware detection system based on association mining

Springer Science and Business Media LLC - Tập 4 Số 4 - Trang 323-334 - 2008
Yanfang Ye1, Dingding Wang2, Tao Li2, YE Dong-yi3, Qingshan Jiang1
1[Xiamen University]
2Florida International University
3Fuzhou University#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adleman, L.: An abstract theory of computer viruses (invited talk). In: CRYPTO ’88: Proceedings on Advances in Cryptology, pp. 354–374, New York, NY, USA. Springer, New York (1990)

Agrawal, R., Imielinski, T.: Mining association rules between sets of items in large databases. In: Proceedings of SIGMOD (1993)

Agrawal, R., Srikant, R.: Fast algorithms for association rule mining. In: Proceedings of VLDB-94 (1994)

Cheng, H., Yan, X., Han, J., Hsu, C.: Discriminative frequenct pattern analysis for effective classification. In: Proceedings of IEEE 23rd International Conference on Data Engineering (ICDE-07) (2007)

Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. In: Proceedings of the 12th USENIX Security Symposium (2003)

Fan M. and Li C. (2003). Mining frequent patterns in an fp-tree without conditional fp-tree generation. J. Comput. Res. Dev. 40: 1216–1222

Filiol E. (2005). Computer Viruses: from Theory to Applications. Springer, Heidelberg

Filiol E. (2006). Malware pattern scanning schemes secure against black-box analysis. J. Comput. Virol. 2(1): 35–50

Filiol E., Jacob G. and Liard M.L. (2007). Evaluation methodology and theoretical model for antiviral behavioural detection strategies. J. Comput. Virol. 3(1): 27–37

Han J. and Kamber M. (2006). Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco

Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of SIGMOD, pp. 1–12, May (2000)

Hsu C. and Lin C. (2002). A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13: 415–425

Jain A., Duin R. and Mao J. (2000). Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 22: 4–37

Kephart, J., Arnold, W.: Automatic extraction of computer virus signatures. In: Proceedings of 4th Virus Bulletin International Conference, pp. 178–184 (1994)

Kolter, J., Maloof, M.: Learning to detect malicious executables in the wild. In: Proceedings of KDD’04 (2004)

Kwak N. and Choi C. (2002). Input feature selection by mutual information based on parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24: 1667–1671

Langley, P.: Selection of relevant features in machine learning. In: Proceedings of AAAI Fall Symposium (1994)

Lee, T., Mody, J.: Behavioral classification. In: Proceedings of 2006 EICAR Conference (2006)

Liu, B., Hsu, W., Ma, Y.: Integreting classification and association rule mining. In: Proceedings of KDD’98 (1998)

Lo R., Levitt K. and Olsson R. (1995). Mcf: A malicious code filter. Comput. Secur. 14: 541–566

McGraw G. and Morrisett G. (2002). Attacking malicious code: report to the infosec research council. IEEE Softw. 17(5): 33–41

Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005)

Rabek, J., Khazan, R., Lewandowski, S., Cunningham, R.: Detection of injected, dynamically generated, and obfuscated malicious code. In: Proceedings of the 2003 ACM Workshop on Rapid Malcode, pp. 76–82 (2003)

Schultz, M., Eskin, E., Zadok, E.: Data mining methods for detection of new malicious executables. In: Security and Privacy, 2001 Proceedings. 2001 IEEE Symposium on 14–16 May, pp. 38–49 (2001)

Shen, Y., Yang, Q., Zhang, Z.: Objective-oriented utility-based association mining. In: Proceedings of IEEE International Conference on Data Mining (2002)

Sung, A., Xu, J., Chavez, P., Mukkamala, S.: Static analyzer of vicious executables (save). In: Proceedings of the 20th Annual Computer Security Applications Conference (2004)

Swets J. and Pickett R. (1982). Evaluation of Diagnostic System: Methods from Signal Detection Theory. Academic Press, New York

Tan P., Steinbach M. and Kumar V. (2005). Introduction to Data Mining. Addison Wesley, Reading

Vapnik V. (1999). The Nature of Statistical Learning Theory. Springer, Heidelberg

Wang, J., Deng, P., Fan, Y., Jaw, L., Liu, Y.: Virus detection using data mining techniques. In: Proceedings of IEEE International Conference on Data Mining (2003)

Witten H. and Frank E. (2005). Data Mining: Practical Machine Learning Tools with Java Implementations. Morgan Kaufmann, San Francisco

Xu, J., Sung, A., Chavez, P., Mukkamala, S.: Polymorphic malicous executable sanner by api sequence analysis. In: Proceedings of the International Conference on Hybrid Intelligent Systems (2004)

Ye, Y., Wang, D., Li, T., Ye, D.: IMDS: Intelligent malware detection system. In: Proccedings of ACM International Conference on Knowlege Discovery and Data Mining (SIGKDD 2007) (2007)

Yin, X., Han, J.: Cpar: Classification based on predictive association rules. In: Proceedings of 3rd SIAM International Conference on Data Mining (SDM’03), May (2003)

Zuo Z. and Tian Zhou M. (2004). Some further theoretical results about computer viruses. Comput. J. 47(6): 627–633

Zuo Z., Zhu Q.-x. and Zhou M.-t. (2005). On the time complexity of computer viruses. IEEE Trans. Inf. Theory 51(8): 2962–2966