An integrated multidisciplinary model describing initiation of cancer and the Warburg hypothesis
Tóm tắt
In this paper we propose a chemical physics mechanism for the initiation of the glycolytic switch commonly known as the Warburg hypothesis, whereby glycolytic activity terminating in lactate continues even in well-oxygenated cells. We show that this may result in cancer via mitotic failure, recasting the current conception of the Warburg effect as a metabolic dysregulation consequent to cancer, to a biophysical defect that may contribute to cancer initiation. Our model is based on analogs of thermodynamic concepts that tie non-equilibrium fluid dynamics ultimately to metabolic imbalance, disrupted microtubule dynamics, and finally, genomic instability, from which cancers can arise. Specifically, we discuss how an analog of non-equilibrium Rayleigh-Benard convection can result in glycolytic oscillations and cause a cell to become locked into a higher-entropy state characteristic of cancer. A quantitative model is presented that attributes the well-known Warburg effect to a biophysical mechanism driven by a convective disturbance in the cell. Contrary to current understanding, this effect may precipitate cancer development, rather than follow from it, providing new insights into carcinogenesis, cancer treatment, and prevention.
Tài liệu tham khảo
Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.
Szent-Györgyi A: The living state and cancer. Proc Nat Acad Sci USA. 1977, 74: 2844-2847. 10.1073/pnas.74.7.2844.
Davies PCW, Lineweaver CH: Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Phys Biol. 2011, 8: 015001-10.1088/1478-3975/8/1/015001.
Miceli MV, Jazwinski SM: Common and cell type-specific responses of human cells to mitochondrial dysfunction. Exp Cell Res. 2005, 302: 270-280. 10.1016/j.yexcr.2004.09.006.
Marino ML, Fais S, Djavaheri-Mergny M, Villa A, Meschini S, Lozupone F, Venturi G, Della Mina P, Pattingre S, Rivoltini L, et al: Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells. Cell death & disease. 2010, 1: e87-10.1038/cddis.2010.67.
Demetrius LA, Simon DK: An inverse-Warburg effect and the origin of Alzheimer’s disease. Biogerontology. 2012, 13: 583-594. 10.1007/s10522-012-9403-6.
Bennett DA: Is there a link between cancer and Alzheimer disease?. Neurology. 2010, 75: 1216-1217.
Kacser H, Burns JA: The control of flux. Symp Soc Exp Biol. 1973, 27: 65-104.
Atkins PW: Physical Chemistry. 1986, New York: W. H. Freeman and Company
Davies PC, Demetrius L, Tuszynski JA: Cancer as a dynamical phase transition. Theor Biol Med Model. 2011, 8: 30-10.1186/1742-4682-8-30.
Regula CS, Pfeiffer JR, Berlin RD: Microtubule assembly and disassembly at alkaline pH. J Cell Biol. 1981, 89: 45-53. 10.1083/jcb.89.1.45.
Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM: MRI of the tumor microenvironment. J Magn Reson Imaging. 2002, 16: 430-450. 10.1002/jmri.10181.
Reshkin SJ, Bellizzi A, Caldeira S, Albarani V, Malanchi I, Poignee M, Alunni-Fabbroni M, Casavola V, Tommasino M: Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2000, 14: 2185-2197. 10.1096/fj.00-0029com.
Stock C, Schwab A: Protons make tumor cells move like clockwork. Pflugers Archiv : European journal of physiology. 2009, 458: 981-992. 10.1007/s00424-009-0677-8.
Harguindey S, Arranz JL, Wahl ML, Orive G, Reshkin SJ: Proton transport inhibitors as potentially selective anticancer drugs. Anticancer Res. 2009, 29: 2127-2136.
Bergé P, Pomeau Y, Vidal C: Order within chaos: towards a deterministic approach to turbulence. 1986, New York: Wiley
Tritton DJ: Physical Fluid Dynamics. 1977, New York: Van Nostrand Reinhold
Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H: Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Science. 2010, 329: 1492-1499. 10.1126/science.1188015.
Yakovlev G, Hirst J: Transhydrogenation reactions catalyzed by mitochondrial NADH-ubiquinone oxidoreductase (Complex I). Biochemistry. 2007, 46: 14250-14258. 10.1021/bi7017915.
Galante YM, Lee Y, Hatefi Y: Effect of pH on the mitochondrial energy-linked and non-energy-linked transhydrogenation reactions. J Biol Chem. 1980, 255: 9641-9646.
Termonia Y, Ross J: Oscillations and control features in glycolysis: numerical analysis of a comprehensive model. Proc Nat Acad Sci USA. 1981, 78: 2952-2956. 10.1073/pnas.78.5.2952.
Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.
Anderson PW: Basic Notions Of Condensed Matter Physics. 1997, Boulder: Westview Press
Parmigiani A, Huber C, Chopard B, Latt J, Bachmann O: Application of the multi distribution function lattice Boltzmann approach to thermal flows. The European Physical Journal Special Topics. 2009, 171: 37-43. 10.1140/epjst/e2009-01009-7.
Kalwarczyk T, Ziȩbacz N, Bielejewska A, Zaboklicka E, Koynov K, Szymański J, Wilk A, Patkowski A, Gapiński J, Butt H-J, Hołyst R:Comparative Analysis of Viscosity of Complex Liquids and Cytoplasm of Mammalian Cells at the Nanoscale. Nano Letters. 2011, 11: 2157-2163. 10.1021/nl2008218.
Chaisson EJ: Cosmic Evolution: The Rise of Complexity in Nature. 2001, Cambridge: Harvard University Press
Demetrius L, Tuszynski JA: Quantum metabolism explains the allometric scaling of metabolic rates. Journal of the Royal Society Interface. 2010, 7: 507-514. 10.1098/rsif.2009.0310.
Makarieva AM, Gorshkov VG, Li B-L, Chown SL, Reich PB, Gavrilov VM: Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proc Nat Acad Sci USA. 2008, 105: 16994-16999. 10.1073/pnas.0802148105.
Hess B, Boiteux A, Krüger J: Cooperation of glycolytic enzymes. Adv Enzyme Regul. 1969, 7: 149-167.
Ingram DM, Castleden WM: Glucose increases experimentally induced colorectal cancer: A preliminary report. Nutr Cancer. 1981, 2: 150-152. 10.1080/01635588109513676.
Boubriak OA, Urban JPG, Cui Z: Monitoring of metabolite gradients in tissue-engineered constructs. Journal of the Royal Society Interface. 2006, 3: 637-648. 10.1098/rsif.2006.0118.
Murphy JB, Hawkins JA: Comparative studies on the metabolism of normal and malignant cells. J Gen Physiol. 1925, 8: 115-130. 10.1085/jgp.8.2.115.
Vaupel P, Mayer A: Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26: 225-239. 10.1007/s10555-007-9055-1.
Ruan K, Song G, Ouyang G: Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009, 107: 1053-1062. 10.1002/jcb.22214.
Brahimi-Horn MC, Chiche J, Pouyssegur J: Hypoxia and cancer. J Mol Med. 2007, 85: 1301-1307. 10.1007/s00109-007-0281-3.
Russo CA, Weber TK, Volpe CM, Stoler DL, Petrelli NJ, Rodriguez-Bigas M, Burhans WC, Anderson GR: An anoxia inducible endonuclease and enhanced DNA breakage as contributors to genomic instability in cancer. Cancer Res. 1995, 55: 1122-1128.
Meng AX, Jalali F, Cuddihy A, Chan N, Bindra RS, Glazer PM, Bristow RG: Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiotherapy and Oncology. 2005, 76: 168-176. 10.1016/j.radonc.2005.06.025.
Rodriguez-Jimenez FJ, Moreno-Manzano V, Lucas-Dominguez R, Sanchez-Puelles JM: Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells. Stem Cells. 2008, 26: 2052-2062. 10.1634/stemcells.2007-1016.
Goldbeter A, Berridge J: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. 1997, Cambridge: Cambridge University Press
Pye EK: Periodicities in the intermediary metabolism. Biochronometry. Edited by: Menaker M. 1971, Washington, D.C: National Academy of Sciences, 623-636.
Sharma V, Annila A: Natural process–natural selection. Biophys Chem. 2007, 127: 123-128. 10.1016/j.bpc.2007.01.005.
Aromolaran AS, Zima AV, Blatter LA: Role of glycolytically generated ATP for CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular endothelial cells. American Journal of Physiology Cell. 2007, 293: C106-C118. 10.1152/ajpcell.00543.2006.
Yang J-H, Yang L, Qu Z, Weiss JN: Glycolytic oscillations in isolated rabbit ventricular myocytes. J Biol Chem. 2008, 283: 36321-36327. 10.1074/jbc.M804794200.
Hilborn R: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. 2001, New York: Oxford University Press
Badii R, Politi A: Complexity: Hierarchical Structures and Scaling in Physics. 1999, Cambridge: Cambridge University Press
Tyner KM, Kopelman R, Philbert MA: “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys J. 2007, 93: 1163-1174. 10.1529/biophysj.106.092452.
Pokorny J: Biophysical cancer transformation pathway. Electromagn Biol Med. 2009, 28: 105-123. 10.1080/15368370802711615.
Thompson JMT, Stewart HB: Nonlinear Dynamics and Chaos. 2002, New York: John Wiley & Sons
May RM: Simple mathematical models with very complicated dynamics. Nature. 1976, 261: 459-467. 10.1038/261459a0.
Boiteux A, Goldbeter A, Hess B: Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. Proc Nat Acad Sci USA. 1975, 72: 3829-3833. 10.1073/pnas.72.10.3829.
Markus M, Kuschmitz D, Hess B: Chaotic dynamics in yeast glycolysis under periodic substrate input flux. FEBS Lett. 1984, 172: 235-238. 10.1016/0014-5793(84)81132-1.
Martinez de la Fuente I, Martinez L, Veguillas J: Dynamic behavior in glycolytic oscillations with phase shifts. Biosystems. 1995, 35: 1-13. 10.1016/0303-2647(94)01473-K.
Martinez de la Fuente I, Martinez L, Veguillas J, Aguirregabiria JM: Quasiperiodicity route to chaos in a biochemical system. Biophys J. 1996, 71: 2375-2379. 10.1016/S0006-3495(96)79431-6.
Rietman EA: Molecular Engineering of Nanosystems. 2001, New York: Springer
Gurel O, Gurel D: Oscillations in Chemical Reactions. 1983, New York: Springer-Verlag
Kaneko K: Theory and applications of coupled map lattices. 1993, New York: John Wiley & Sons
Fischer KH, Hertz JA: Spin Glasses. 1993, Cambridge: Cambridge University Press
Sinha S, Ditto WL: Computing with distributed chaos. Physical review E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 1999, 60: 363-377. 10.1103/PhysRevE.60.363.
von Klitzing L, Betz A: Metabolic control in flow systems. I. Sustained glycolytic oscillations in yeast suspension under continual substrate infusion. Arch Mikrobiol. 1970, 71: 220-225. 10.1007/BF00410155.
Ramanujan VK, Herman BA: Nonlinear scaling analysis of glucose metabolism in normal and cancer cells. J Biomed Opt. 2008, 13: 031219-10.1117/1.2928154.
Aon MA, Cortassa S, O’Rourke B: Percolation and criticality in a mitochondrial network. Proc Nat Acad Sci USA. 2004, 101: 4447-4452. 10.1073/pnas.0307156101.
Pikovsky A, Rosenblum M, Kurths J: Synchronization: A Universal Concept in Nonlinear Sciences. 2003, Cambridge: Cambridge University Press
Tinoco I, Sauer K, Wang JC: Physical chemistry: principles and applications in biological sciences. 1985, Englewood Cliffs, NJ: Prentice-Hall
Palsson BO: Systems Biology: Properties of Reconstructed Networks. 2006, Cambridge: Cambridge University Press
Hynne F, Danø S, Sørensen PG: Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem. 2001, 94: 121-163. 10.1016/S0301-4622(01)00229-0.
Steuer R, Gross T, Selbig J, Blasius B: Structural kinetic modeling of metabolic networks. Proc Nat Acad Sci USA. 2006, 103: 11868-11873. 10.1073/pnas.0600013103.
Wolf J, Passarge J, Somsen OJ, Snoep JL, Heinrich R, Westerhoff HV: Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys J. 2000, 78: 1145-1153. 10.1016/S0006-3495(00)76672-0.
Gehrmann E, Glasser C, Jin Y, Sendhoff B, Drossel B, Hamacher K: Robustness of glycolysis in yeast to internal and external noise. Phys Rev E Stat Nonlinear Soft Matter Phys. 2011, 84: 021913-
Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL: Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun. 2004, 324: 269-275. 10.1016/j.bbrc.2004.09.047.
Mathupala SP, Ko YH, Pedersen PL: The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta. 2010, 1797: 1225-1230. 10.1016/j.bbabio.2010.03.025.
Morita T, Watanabe Y, Takeda K, Okumura K: Effects of pH in the in vitro chromosomal aberration test. Mutat Res. 1989, 225: 55-60. 10.1016/0165-7992(89)90033-X.
Morita T, Nagaki T, Fukuda I, Okumura K: Clastogenicity of low pH to various cultured mammalian cells. Mutat Res. 1992, 268: 297-305. 10.1016/0027-5107(92)90235-T.
Cifone MA, Myhr B, Eiche A, Bolcsfoldi G: Effect of pH shifts on the mutant frequency at the thymidine kinase locus in mouse lymphoma L5178Y TK+/− cells. Mutat Res. 1987, 189: 39-46. 10.1016/0165-1218(87)90031-0.
Brusick D: Genotoxic effects in cultured mammalian cells produced by low pH treatment conditions and increased ion concentrations. Environ Mutagen. 1986, 8: 879-886. 10.1002/em.2860080611.
Cipollaro M, Corsale G, Esposito A, Ragucci E, Staiano N, Giordano GG, Pagano G: Sublethal pH decrease may cause genetic damage to eukaryotic cell: a study on sea urchins and Salmonella typhimurium. Teratog Carcinog Mutagen. 1986, 6: 275-287. 10.1002/tcm.1770060404.
Yuan J, Narayanan L, Rockwell S, Glazer PM: Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res. 2000, 60: 4372-4376.
Kondo A, Safaei R, Mishima M, Niedner H, Lin X, Howell SB: Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Res. 2001, 61: 7603-7607.
Suresh S: Biomechanics and biophysics of cancer cells. Acta Biomater. 2007, 3: 413-438. 10.1016/j.actbio.2007.04.002.
Ketene AN: The AFM study of ovarian cell structural mechanics in the progression of cancer. Masters thesis. 2011, : Blacksburg, Virginia Virginia Tech, Mechanical Engineering
Creekmore AL, Silkworth WT, Cimini D, Jensen RV, Roberts PC, Schmelz EM: Changes in gene expression and cellular architecture in an ovarian cancer progression model. PLoS One. 2011, 6: e17676-10.1371/journal.pone.0017676.
Fygenson D, Braun E, Libchaber A: Phase diagram of microtubules. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994, 50: 1579-1588. 10.1103/PhysRevE.50.1579.
Sept D, Xu J, Pollard TD, McCammon JA: Annealing accounts for the length of actin filaments formed by spontaneous polymerization. Biophys J. 1999, 77: 2911-2919. 10.1016/S0006-3495(99)77124-9.
Bolterauer H, Limbach HJ, Tuszyński JA: Models of assembly and disassembly of individual microtubules: stochastic and averaged equations. Journal of Biological Physics. 1999, 25: 1-22. 10.1023/A:1005159215657.
Desai A, Mitchison TJ: Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997, 13: 83-117. 10.1146/annurev.cellbio.13.1.83.
Pollard TD: Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol. 1986, 103: 2747-2754. 10.1083/jcb.103.6.2747.
Bakhoum SF, Thompson SL, Manning AL, Compton DA: Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol. 2009, 11: 27-35. 10.1038/ncb1809.
Thompson SL, Bakhoum SF, Compton DA: Mechanisms of chromosomal instability. Current biology. 2010, 20: R285-R295. 10.1016/j.cub.2010.01.034.
Vitale I, Galluzzi L, Castedo M, Kroemer G: Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol. 2011, 12: 385-392.
Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D: DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012, 482: 53-58. 10.1038/nature10802.
Zhang P, Li H, Tan X, Chen L, Wang S: Association of metformin use with cancer incidence and mortality: A meta-analysis. Cancer Epidemiol. 2013, 37: 207-218. 10.1016/j.canep.2012.12.009.
Landman GWD, Kleefstra N, van Hateren KJJ, Groenier KH, Gans ROB, Bilo HJG: Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care. 2010, 33: 322-326. 10.2337/dc09-1380.
Li D, Yeung S-CJ, Hassan MM, Konopleva M, Abbruzzese JL: Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology. 2009, 137: 482-488. 10.1053/j.gastro.2009.04.013.
Pedersen PL: Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 2007, 39: 211-222. 10.1007/s10863-007-9094-x.
Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL: A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr. 2012, 44: 163-170. 10.1007/s10863-012-9417-4.
Ganapathy-Kanniappan S, Geschwind J-FH, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I, Cole RN, Syed LH, Rao PP, Ota S, Vali M: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res. 2009, 29: 4909-4918.