An integral operator onH p and Hardy’s inequality

Journal d'Analyse Mathematique - Tập 85 Số 1 - Trang 157-176 - 2001
Alexandru Aleman1, Joseph A. Cima2
1Department of Mathematics, University of Lund, Box 118, S-22100 Lund, Sweden
2Department of Mathematics, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. Aleman and A. Siskakis,An integral operator on H p, Complex Variables Theory Appl.28 (1995), 149–158.

A. Baernstein, II,Analytic functions of bounded mean oscillation, inAspects of Contemporary Analysis, Proc. of an Instructional Conference organized by the London Math. Soc. at the Univ. of Durham (D. A. Brannan and J. G. Clunie, eds.), Academic Press, New York, 1980, pp. 3–36.

R. R. Coifman and Y. Meyer,Au delá des opérateurs pseudo-différentiels, Astérisque57 (1978), 1–184.

P. Duren,Theory of H p Spaces, Academic Press, New York, 1970.

Miao Jie,The Cesaro operator is bounded on H p for 0<p<1, Proc. Amer. Math. Soc.116 (1992), 1077–1079.

C. Pommerenke,Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv.52 (1978), 591–602.

A. G. Siskakis,The Cesaro operator is bounded on H 1, Proc. Amer. Math. Soc.110 (1990), 461–462.

A. Zygmud,Trigonometric Series, 2nd edition, Vol. 2, Cambridge University Press, 1959.