An integer programming model for obtaining cyclic quasi-difference matrices
Tài liệu tham khảo
Hedayat, 1999, Orthogonal arrays: Theory and applications
2007, Handbook of combinatorial designs
Brouwer, 2012
Bose, 1961, On some connections between the design of experiments and information theory, Bull Inst Internat Statist, 38, 257
Delsarte, 1973, An algebraic approach to the association schemes of coding theory, Philips Res Rep Suppl, vi+97
Xu, 2021, A flexible image cipher based on orthogonal arrays, Inform Sci, 551, 39, 10.1016/j.ins.2020.11.029
Gopalakrishnan, 2006, Applications of orthogonal arrays to computer science, 149
Wang, 2008, Using orthogonal array to obtain gradient liquid chromatography conditions of enhanced peak intensity to determine geniposide and genipin with electrospray tandem mass spectrometry, J Chromatogr A, 1212, 68, 10.1016/j.chroma.2008.10.035
Taguchi, 1987
Goyeneche, 2014, Genuinely multipartite entangled states and orthogonal arrays, Phys Rev A, 90, 10.1103/PhysRevA.90.022316
Pang, 2019, Two and three-uniform states from irredundant orthogonal arrays, Npj Quant Inf, 5, 1
Dukanovic, 2007, Semidefinite programming relaxations for graph coloring and maximal clique problems, Math Program, 345, 10.1007/s10107-006-0026-z
Seeger, 2014, Centers of sets with symmetry or cyclicity properties, TOP, 22, 716, 10.1007/s11750-013-0289-5
Buratti, 1999, Old and new designs via difference multisets and strong difference families, J Combin Des, 7, 406, 10.1002/(SICI)1520-6610(1999)7:6<406::AID-JCD2>3.0.CO;2-U
Davis, 2016, Bi-cayley normal uniform multiplicative designs, Discrete Math, 339, 2224, 10.1016/j.disc.2016.03.028
Wilson, 1972, Cyclotomy and difference families in elementary abelian groups, J Number Theory, 4, 17, 10.1016/0022-314X(72)90009-1
Kutnar, 2009, Strongly regular tri-Cayley graphs, European J Combin, 30, 822, 10.1016/j.ejc.2008.09.002
Leung, 1993, Partial difference triples, J Algebraic Combin, 2, 397, 10.1023/A:1022475918250
Araluze, 2012, Partial sum quadruples and bi-Abelian digraphs, J Combin Theory Ser A, 119, 1811, 10.1016/j.jcta.2012.06.004
Araluze, 2011, Edge connectivity in difference graphs and some new constructions of partial sum families, European J Combin, 32, 352, 10.1016/j.ejc.2010.10.012
Bose, 1952, Orthogonal arrays of strength two and three, Ann Math Statist, 23, 508, 10.1214/aoms/1177729331
Abel, 2008, Some V(12,t) vectors and designs from difference and quasi-difference matrices, Australas J Combin, 40, 69
Wang, 2018, A short disproof of Euler’s conjecture based on quasi-difference matrices and difference matrices, Discrete Math, 341, 1114, 10.1016/j.disc.2017.10.019
Kutnar, 2013, Quasi m-Cayley strongly regular graphs, J Korean Math Soc, 50, 1199, 10.4134/JKMS.2013.50.6.1199
Radhakrishna Rao, 1947, Factorial experiments derivable from combinatorial arrangements of arrays, Suppl J R Statist Soc, 9, 128, 10.2307/2983576
Plackett, 1946, The design of optimum multifactorial experiments, Biometrika, 33, 305, 10.1093/biomet/33.4.305
Jungnickel, 1979, On difference matrices, resolvable transversal designs and generalized Hadamard matrices, Math Z, 167, 49, 10.1007/BF01215243
Ge, 2005, On (g,4;1)-difference matrices, Discrete Math, 301, 164, 10.1016/j.disc.2005.07.004
IBM ILOG Cplex, 2009, V12. 1: User’s manual for CPLEX, Int Bus Mach Corp, 46, 157
ARINA, 2021
The Sage Developers, 2020